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ABSTRACT

A new approach to the study of turbulence,based
on the general algebraic properties of the filtered
representations of a turbulent field at different fil-
tering levels,is presented.New quantities, the gene-
ralized central moments and the generalized turbu-
lent stresses are introduced,and an algebraic iden-
tity that relates these quantities at different levels
is deduced.This new approach extends the statisti-
cal approach to a general implicit or explicit filtering
operator and it represents in the opinion of the au-
thor a simple way to study the similarity of the tur-
bulence at different levels. A particular application
of this approach to the subgrid scale (SGS) model-
ling in the large eddy simulation (LES) of turbulent
flows,based on the definition and the utilization of
the resolved turbulence,is discussrd.

INTRODUCTION

The idea that stands at the basis of the dynamic
SGS models recently tested with success in the LES
of the transitional and the turbulent channel flows,
Germano et al. (1990),and in the LES of compres-
sible flows and transport of a scalar, Moin et al.
(1991),is very simple. In the LES of turbulent flows
the large scale of the turbulent field can be cap-
tured,and a large amount of infornation is collec-
ted It is spontaneous to try to utilize this informa-
tion in order to adapt the SGS model dynamically
and in an interactive way to the real calculated tur-
bulent field. Loosely speaking,if we interpret the
SGS model mainly as a way of introducing an ap-
propriate turbulent viscosity, we could guess on te-
sting procedures that in some way or another check
the real amount required by that particular turbulent
flow.Such intelligent model,that in particular should
recognize where the flow is laminar and should ac-
count for an eventual backscatter from small scales
to larger scales,cannot have,in the opinion of the
author,a universal form,but in some way or another
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must actively interact with the resolved scale.In this
paper some possible ways to test the resolved scale
in order to produce an interactive procedure that
dynamically adapt the model to the calculations are
presented.They are based on a new algebraic appro-
ach to the study of turbulence that in some sense
extends to a general filtering or averaging or split-
ting operator the statistical approach.The need for
a new theoretical approach intermediate between
the statistical approach and the coherent structu-
res approach seems largely requested at the present
moment in the study of turbulence. New splitting
procedures of the turbulent flow different from the
Reynolds decomposition are actually proposed and
in use not only in the LES computation of turbulent
flows but also in some multi-level techniques and in
a lot of experimental procedures where the turbulent
field is analyzed in terms of non statistical quanti-
ties. The main problem of such decompositions is
that the usual algebraic properties of the statistical
averages are no longer valid.In particular the mean
value of the fluctuations is generally different from
zero,so that its fundamental role in the Reynolds
decomposition is largely reduced when we consider
a general filtering operator. As a consequence the
formal analysis of the turbulence in terms of the
fluctuations is not so simple as in the case of the
statistical average,and a simple extension of the sta-
tistical approach can be founded on different quan-
tities defined without recourse to the fluctations.In
the following such new quantities,the generalized
central moments, and in particular the generalized
central moments of the second order of the compo-
nents of the velocity field, the generalized turbulent
stresses,are defined. They do not involve explicitly
the fluctuations,they reduce to the usual statistical
expressions in the case of a statistical operator and
they give a simple and unified description of the al-
gebraic structure of the filtered turbulent field and
the filtered turt ulent equations.This new approach
is in particular well fitted to examine the similarity
among the turbulence at different levels.Peculiar to
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a decomposition in terms of mean values and fluc-
tuations is the vision of a turbulent field that is the
sum of different contributions. Peculiar to this new
approach is the idea of the comparison of diffe-
rent representations,or numerical realizations,at dif-
ferent filtering lévels.In particular it will be shown
that it is quite spontaneous in a numerical realiza-
tion to analyze the resolved turbulence in order to
extract informations useful for an interactive model-
ling.Fundamental in order to do that is an algebraic
identity that relates the generalized turbulent stres-
ses at different levels.In the following all these points
are exposed in detail.

FILTERING ALGEBRA.THE GENERA-
LIZED TURBULENT STRESSES. AVE-
RAGING INVARIANCE OF THE FILTE-
RED EQUATIONS.

In the LES of the turbulent flows the large scale of
the turbulent field is captured and the residual small
scale is modeled The scale of the splitting between
small and large scales is dictated by the numeri-
cal resolution,and in the physical space it is expli-
citly given by the grid length.As such the LES the-
ory is intimately associated to the numerical com-
putations,and,as Leonard (1974) pointed out,a LES
splitting procedure can be formally represented by a
filter generally expressed as a convolutional integral
applied to the original turbulent field.More gene-
rally we will interpret an explicit or implicit filter as
a linear operator F' that when applied to a turbu-
lent quantity o produces the filtered representation
< a >g,and it is of some interest to examine the
related algebraic properties.Pioneering works on the
filtering algebra applied to turbulence are the pa-
pers of Kampé de Fériet (1957) and Rota (1960),but
their studies were mainly directed to the analysis
of the Reynolds operators,provided with the well
known propetties

ag fB>pr=<a>i< B>y (1)

<L a>p>p=<L oDy (2)

The LES operators are not Reynolds operators,and
in general the mean value of the mean value is not
equal to the mean value. The analysis of the alge-
braic properties of the non-Reynolds operators has
been conducted on the same basis of the statistical
approach,and in particular the well known procedure

of decomposing a turbulent quantity in a mean va-
lue and a fluctuation was adopted

a=< o>+ (3)

The main problem of turbulence modeling is to ex-
press the turbulent stress

(Ui, ) =< wiu, S5~ < uy >p<u; S5 (4)

in terms of the resolved filtered quantities.in the
case of a statistical Reynolds operator the turbulent
stress is simply given in terms of the fluctuations by
the well known expression

Tf(u;,uj) = u’,-u; >f (5)

but when F is a general filtering operator the ex-
pression of the turbulent stress 7p(u;, u;) in terms of
the fluctuations is not so simple,Deardorff (1970),
Leonard (1974),Schumann (1975).New terms,called
the Leonard term and the cross term appear,and
the separate modeling of each of them give some
problems owing to their intrinsic non-Galileian inva-
riance Speziale (1985).A different algebraic appro-
ach to the problem has been followed by the present
author,Germano (1986),(1987) and (1990).This ap-
proach does not require any decomposition in mean
values and fluctuations,but is mainly based on the
introduction of new quantities,the generalized cen-
tral moments,Germano (1991),that in some sense
extend to the non-Reynolds operators the statisti-
cal relations between the moments and the central
moments. Given the turbulent fields o, 3,7, ......,the
moments are expressed by

| <aff>; <affy>;
and the generalized central moments

Tf(anB) Tf(avﬂ,'Y)

are defined by the statistical relations

THo,B) = <af>p—<a>< P>y

(@, B,7) = <afy>; - <a>;7HB,7)
- <B>;1i(v, @)= < 7> 74, B)
- <a>; K PB>i <y >y

The genera!zed central moments of the second or-
der related to the Cartesian velocity components
U,,Uj

T, uy) =< Uty >y — < U4 >p< uj >y
will be in particular called generalized turbulent stres-
ses,and we notice that in the case that F is a sta-

tistical Reynolds operator they reduce to the well
known expressions

75(, B)

it

< arﬂl >f

m(e,8,7) = <afy >; (7)
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If we now assume that F' is commuting with the
space and (ime derivatives.and if we derive from
the Navier-Stokes equations the evolutionary equa-
tions for the generalized central moments,the result
is very simple and surprising at the same time.In
terms of the generalized central moments the filte-
red equations are ezactly the Reynolds equations,
so that the algebraic structure of the closure is
the same for every linear commuting filter. This
is what we call the averaging invariance of the tur-
bulent equations.

THE RESOLVED TURBULENCE AND
THE RESOLVED TURBULENT STRES-
SES

Let us now indicate as usual the average with an
overline. The averaged equations for a turbulent in-
compressible flow are given by the expressions

g%— =0 (8)
on L 0n 9%, 0
ot dz, Or, Oz,
Ty = —pbyy + 205, (10)
where )
5, = (g;‘} + g—Z—j) (11)

The generalized turbulent stress 7;, is given by the
expression

T, =%, — 4, 4, (12)
and the evolutionary equations are given by

aT,'j + BT,J 82

Bt T %5z, = VBardey T Lot Dt~
(13)
where
Ot O,
P; = - . _—t
J T"az,, T"kazzk

oy = 2psi; — P 5;)

o) = o (TEOG _0u05;

v 3x;,6xk Oz Oz}
_ ad,';k

DU - c'):ck

di]k = "'{Tuk + (PUJ p u])6xk + (m —~p ai)éjk}

(14)

and T, is the generalized central moment of the
third order

Tijk = Uil Ug — WiTjk — UjTei — UrTij — Ul
(15)

We notice that the contracted form of Eq.(13) gives
the equation

0K e oK K 1 lp 1y 1
Bt kak 6:ck3 + = kk+2 kk 25kk

(16)
where I the generalized turbulent energy,is given
by

2N = Tkk (17)

and the turbulent energy production P is given by
1
P = 5P = —7usu (18)

It is easy to see that in terms of these quantities the
algebraic structure of the closure is the same,and
the basic ingredients of turbulence modeling can
be generally applied to different filters.In particu-
lar the Smagorinsky (1963) model, based on a ba-
lance between production and dissipation,can be al-
ways adopted,provided that we express everything
in terms of the particular filtered quantities.This
averaging invariance suggests a large insensitwity

of turbulence modeling to the particular implicit or
explicit filter used,and a largely independent alge-
braic structure of the closure,so that the more im-
portant parameter in turbulence modelling remains
the scale.In the large eddy simulation of turbulent
flows the scale can be changed by changing the
level of the pumerical resolution,so that it could
be appealing to recur to multi-level modelling in
which different scales are introduced. Usually the
multi-level procedures are based on spectral split-
ting operators, Tchen (1973), Schiestel (1987),and
the term split spectrum closures has been also intro-
duced,Launder (1989).Also in this case the appro-
ach of the present author is slightly different.If we
consider the attitude of a numerical experimenter in
turbulence,we notice that he is more interested to
the comparison between different numerical repre-
sentations at two different numerical levels than to
the decomposition in fluctuations that by definition
are unresolved and out of reach.In other words the
LES of the turbulent flows is based on the fact that
a new physical scale introduced in the problem is
the grid scale,and from this point of view a possible
LES multi-level procedure ¢. 4ld be based on two
different computations at two different levels with
:wo different length scaies and on the comparison of
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the results.Obviously to conduct two different LES
computations at the same time is not so simple,so
that something different could be excogitated.If we
are convinced that the generalized turbulent stresses
are really the more natural and physical extension of
the Reynolds stresses,we could introduce an expli-
cit test filter G and extract from the resolved scale
new similar and homogeneous quantities,the resol-
ved turbulent stresses in order to test the resuvlved
turbulence. For example we can extract from the
resolved scale the resolved turbulent stresses given
by the relation

T >p,< Uy >p) = <<u D>p< U >p>y
- <u.>fg<uj>fg

(19)

or the resolved turbulent energy,or the resolved pro-
duction, or the resolved dissipation,or anything that
we would like to test.The use that we can do of
these quantities is till now undefined,but a simple
algebraic identity provides us with some useful infor-
mation about the physical meaning of the resolved
quantities.Let us indicate with FG the new level
that we reach by applying to the F-level the test
filter G.It is eas to see that,Germano (1990),

Tro(tn ty) = < gy, 1)) >¢ +7o(<ui >p, <u,>y)
(20)

The physical meaning of this algebraic relation is
very simple: the turbulent stress at the F'G-level

Tro(Uiyty) = < wy Spg — < Uy Spg< Uy Sgq
(21)

is equal to the G-averageu value of the turbulent
stress at the F-level plus the resolved turbulent
stress T,(< u; >f,< u; >y) extracted from the
resolved level F'We notice that this stress can be
explicitly calculated in a Large Eddy Simulation,ana
in the following the possible use of this algebraic
property in subgrid modelling is discussed.

THE INTERACTIVE USE OF THE RE-
SOLVED TURBULENCE IN SGS MODE-
LING

This new approach represents in the opinion of the
author a simple way to study the turbulence at dif-
ferent levels and to explore the similarity between
them.In particular the analysis of the resolved tur-
bulence at the resolved scale in a LES computation
based on the resolved turbulent stresses can be a
useful tool for improving and adapting in an inte-
ractive way the SGS mode! to the real turbulent

field.We notice that till now it has not been neces-
sary to assume a particular form for the filtering ope-
rator F'. This point deserves some comments,and
first of all we notice that our algebraic or operatio-
nal approach formally applies to all linear operators
that commute with the space and time derivatives.
The statistical operator,the infinite time average

<y (%) >= Jim 2T/+7 ui (Z,¢)dt’  (22)

the finite time average

1 t+T
<u (£,4T) > 5T ot u (&,¢)dt’  (23)
the box average
< u, (&,t1) >=5 z+l/y+l/z&-1 t) d*z’

(24)
are typical examples.Sharp cut-off filters in the spec-
tral space, volume averages Gaussian filters

<ui(E, 40> =

[ (@, t) (:z—m“f;z) Brdt (25

where

I 6\?
g(a:—:c’:l)=<m) exXp |~ (26)

have been prcposed and used in the past and belong
to the category of filters considered in this paper,
and also a numerical discretization is by itself an
implicit filter provided with generally unknown pro-
perties,Regallo & Moin (1984). As a consequence
the discussion is about prefiltering explicitly or not
the equations,in order to remove or not the inde-
terminacy of the numerical discretization.In our opi-
nion the algebraic properties of an homogeneous di-
scretization scheme,an implicit filter,are largely the
same of an explicit filter.Owing to the averaging
invariance we think that there is a large insensiti-
vity of the results to the real filter applied,and that
the most important point is its scale and not its
particular exglicit or implicit shape.ln order to use
such strong d:pendence on scales,a simple multi-
level application of the algebraic identity (20) to
SGS modeling is exposed in the following. The sim-
plest SGS parameterization of the unresolved tur-
bulent stress 77(u;, u;) is given by the Smagorinsky
model in which it is assumed that the turbulent dis-
sipation is in equilibrium with the turbulent produc-
tion.The Smagorinsky model is functionally expres-
sed in terms of the implicitly or explicitly resolved
F-scale < u; >; and of its cha:acteristic length
scale [; and it contains a universal constant cg
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that unfortunately is not so universal and constant
as one would like. Evidence exists,Rogallo & Moin
(1984),that the Smagorinsky constant decreases in
the presence of mean shear, where the large scale
mean velocity gradient is probably overestimated
and it must be supplemented at the wall by em-
pirical wall functions. in order to extend the range
of application of the Smagorinsky model we can im-
prove the consistency of the model with the results
that are obtained and to adjust in real time the mo-
del to them.In doing that we can use the algebraic
relation (20).If we indicate symbolically with

M(< u, >p, < uy >55lp,05) = 7(unuy)

the functional expression of the Smagorinsky model
at the F-level and with

M(< uy >, <ty >pg3lpg,05) = Trg(uty, uy)

the corresponding expression at the FG-level we can
consistently write on the basis of the algebraic re-
lation (20)

M(< 4y > < Uy >pilpg,c5) =
< M(< u, >p.<uy>plpcs) >, +
T <y >p, < uy>g)

(2)
and the more consistent and appropriate Smago-
nnsky constant cs can be derived. We notice that
the constant cs so calculated depends on the posi-
tion,the time and the indices ¢, j,s0 that it is not a
constant at all As regards the dependence on the
indices ¢, j a scalar procedure should probably only

pretend that the turbulent energy production Py, at
the FG-level

Prg = =Tro(tti, 1)) < 83y >

is consistent with the resolved sample.:n this case
we can apply the algebraic identity (20) in the con-
tracted form

Tl ) < sy >pp =
<7t 1)) > < 80y >
T(<u >y, <uy>p) < 8y >y

+

so that we can write

ML u, >pe< uy >roilgics) < sy >py =
<M<, >p.< uy>pilpes) >e< 8y, >pp +
T <> <uy>yp) < 8y Sy
(20)
and a local isotropic value of the Smagorinsky con-
stani can be obtained This particular model was

proposed by the authcr,Germano (1990}, at the 1990
Summer Program of the Center for Turbulence Re-
search and the interaction theory-computation, Ger-
mano et al. (1990),has greatly improved this sugge-
sted procedure as follows.It was clear from the first
numerical results that the dependence on time of the
Smagorinsky constant should be eliminated.Such de-
pendence can be eliminated by a time average or a
space average if some simmetry plane for the turbu-
lence exists and in the case of homogeneous turbu-
lence a volume average could be the best choice,Moin
et al. (1991). We notice that the model depends
only on the ratio of the filter lengths I;,/l;,and
it goes to zero with the resolved turbulent stress
7,(< w, >5,< u; >y),50 that it is able to recognize
when the flow is laminar at the resolved level. The
optimal size of the ratio l;,/1; is not so critical,Moin
et al,and a good choice is 2. This model was ym-
plemented by applying explicit spect-al cut-offs fil-
ters and it was tested a priori by using the DNS
database of Kim,Moin & Moser (1987) for turbu-
lent channel flow and that of Zang,Gilbert & Kleiser
(1990) for transitional flow.In order to determine its
accuracy it was also tested a posteriori in the LES
of transitional and fully developed turbulent chan-
nel flow.The results are in satisfactory agreement

with the direct simulation data and the model has
been recently extended by Moin et al. (1991) to
the compressible turbulence with excellent results.

CONCLUSIONS

The algebraic identity (20) that relates the genera-
lized turbulent stresses at two different level with
the resolved turbulent stress can be interpreted in
two different ways.It can be seen as a consistency
rule that in some way or another can be introdu-
ced and used in the turbulence modeling and it can
be read as a similarity rule between the turbulence
extracted by the resolved level and the turbulence
at two other different levels Both these interpre-
tations can suggest different uses,and the LES re-
sults obtained with the dynamic Smagorinsky mo-
del give confidence on useful applications.We notice
that these results have been produced in the frame-
work of a new opecratorial approach to the study
of turbulence that extends the Reynolds theory and
in some sense is a first step towards a general the-
ory that should go from the direct to the statistical
approach.The author is actively involved in such a
program since some years,and it is a particular plea-
sure to acknowledge here the Center for Turbulence
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Research of the Stanford University and the NASA
Ames.In its confident and lively climate the author
has experienced a genuire and stimulating cientific
cooperation.
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STCCHASTIC BACKSCATTER IN THE NEAR WALL

REGION OF LARGE-EDDY SIMULATIONS

P.J.Mason and D.J.Thomson

U.K. Meteorological Office, London Road, Bracknell,
Berkshire RG12 2SZ, United Kingdom

ABSTRACT

The abiiity of a large-eddy simulation to repre-
sent the large-scale motions in the interior of a tur-
bulent flow is well established but concerns remain
for the behaviour close to rigid surfaces. With the
exception of low Reynolds number flows, the large-
eddy description in the flow interior must be matched
to some description of the flow near the surface in
which all except the larger scale ‘inactive’ motions
are averaged, This near surface region should be
characterised by the usual logarithmic velocity pro-
file, but past simulations have failed to give this
profile in the matching region. An obvious failing
of the Smagorinsky model is its failure to represent
stochastic subgrid stress variations. It is shown here
that including these variations leads to a marked im-
provement in the velocity profile.

INTRODUCTION

In most turbulent flows the transports of heat and
momentum are dominated by large-scale motions
whose properties depend on some integral character-
istics of the flow. As a result, time-average closure
techniques which depend on local mean gradients
are often inadequate, whilst large-eddy simulations
offer the potential for accurate predictions. A large-
eddy simulation involves calculating the large-scale
turbulent motions explicitly with a three-dimensional
numerical model whilst the smaller scale motions
are parametrised. Away from boundaries and sig-
nificant statically stable stratification, this approack
seems both rational and is in practice insensitive
to the details of the parametrisation of small-scale
motions. The rationality arises when the distinc-
tion between the large-scale (resolved-scale) and
parametrised motions (subgrid-scale) falls within an
inertial subrange. In such cases theory and re-
sults from applications suggest that a simple eddy
viscosity may provide an adequate parametrisation
(subgrid-scale model).

The modelling of the near surface region differs
considerably from the modelling of the flow interior,
In most large-eddy simulations the mesh spacing par-
allel to surface is constant with distance from the
boundary whilst the mesh is usually refined in the
vertical near the surface. This refinement does not
allow the resolution of the truly three-dimensional
motions which occur on a decreasing scale as the sur-
face is approached, but is essential to allow a proper
resolution of quasi-two-dimensional motions which
occur near the surface and which derive from the
‘interiot’ eddies. The limit to model representation
of three-dimensional motions is set by the resolution
parallel to the boundary. The subgrid model and/or
boundary conditions near the surface thus need to
represent the near-surface eddies whose scale varies
in proportion to distance from the surface. On the
one hand this can be expected to be difficult as, in
contrast to the flow interior, it involves the main pro-
duction scales. On the other hand there are some
encouraging factors. At these heights there is 2 local
balance between the ensemble-average turbulence
energy production and dissipatioi,. Near the surface,
the characteristic scale of the turbulent motions be-
comes smaller than the scale of the numerical mesh
parailel to the surface, and, with this implied vol-
ume averaging, there is some hope of the subgrid
stresses becoming deterministic functions of the re-
solved velocity as the surface is approached. The
gravest difficuities can be anticipated to be at the
‘matching’ height where the magnitudes of the re-
solved and subgrid stresses are comparable. At this
height the worst of everything prevails. The subgrid
stresses are large and would be expected to have
statistical fluctuations.

in this study we examined a typical simulation
with a Smagorinsky subgrid model. In common with
other such simulations, the simulation fails to main-
tain the correct logarithmic velocity profile in the
matching region, the velocity gradients in this re-
gion being too great. A series of simulations with
varying resolution and different near-surface mixing-
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length descriptions were conducted to try to improve
the flow profile in the matching region. No adequate
solution to the difficulties was tound. Some further
simulations were then conducted with a stochas-
tic subgrid model to represent the non-deterministic
character of the subgrid stresses. The results ob-
tained show a marked improvement in the near-wall
mean velocity and temperature profiles.

MODEL DESCRIPTION

The large eddy simulation technique used in the
present study is fairly standard and is based on the
Smagorinsky (1963) subgrid model with the subgrid
Prandt! number, Pr, taken to be 0.7. In the interior
of the flow the subgrid mixing-length [ is set equal
to a constant I which, according to the theoretical
arguments of Lilly (1967), we may relate to a filter
scale Iy by I; =1,/C/, where C; is about 0.2. Near
the wall I must vary as x(z + z9), where x is von
Karman's constant and z, is the roughnes. length,
in order to provide the correct behaviour near the
surface. [n the matching region between the near-
surface region and the interior we shall consider sim-
ple but arbitrary matches such as

10" = 1/1§ + 1/(k(z + 20))" (1)

where n is a constant.

In this study the simulations are confined to two
flows in which a logarithmic velocity profile is ex-
pected. The first flow considered is a neutral static
stability planetary boundary layer with a passive
scalar whose source is a constant surface flux. The
specific parameters selected are a surface roughness
length zo of 0.1m and a geostrophic wind U, of
10ms—!, with a domain depth of 1200m, a domain
length in the z direction of 3200m and a |ateral do-
main width of 1600m. The lateral boundaries are
periodic. The number of grid points used is 40 x
40 x 24 in the =,y and z directions. The z direc-
tion mesh has a variable spacing with smaller grid
intervals close to the surface. The value of [ used
is 10m and C, (the ratio of [y to the grid spacing)
has a value of about 0.2 in the lower third of the do-
main but decreases to about 0.15 close to the upper
boundary.

The second flow considered is very similar but
lacks the small complicating influence of the Corio-
lis force. The flow considered is turbulent flow in a
horizontally infinite channel with a stress-free (but
rigid) upper surface and constant imposed pressure
gradient. The lower rigid non-slip surface is assumed
rough with the same value of z, as used in the plan-
etary boundary layer case. The channel depth is

1060m. In order to provide high spatial resolution
of the eddies critical in determining the lower part
of the boundary layer, the length of the domain has
been limited to 1000m and the width to 600m. This
will clearly cause the loss of significant larger-scale
eddies and this must be noted in considering the re-
sults. The number of mesh pnints used are 54 x
54 x 64 so that relative to the planetary boundary
layer simulation the resolution has been increased
by a factor of about 4 in all three directions. In
the interior of the flow Az is 19m, with most of the
mesh refinement occurring below 200m. The vari-
ous simulations used values of [, varying from 2m
to 5m, corresponding to values of C, (based on the
grid spacing in the interior) between about 0.13 and
0.32.

SMAGORINSKY MODEL RESULTS

We first consider the neutral static stability plan-
etary boundary layer simulation with the standard
Smagorinsky subgrid model and a mixing-length pro-
file given by Eq. (1) with n = 2. Fig. 1 shows the
vertical profiles of non-dimensional velocity si.ear S,
and passive scalar gradient S in the lowest third of
the boundary layer, where S, and Sy are defined by

(3 () "

and _
S, = 90 &(z + 2)
8= 82 6.Pr -
Here u, is the friction velocity and 8, = —Hy/u..

These quantities should take a value of unity within
the strict near-surface logarithmic layer. For further
reference the non-dimensional shear obtained from a
mixing-length solution of the channel flow problem
described above is also shown (the channel and plan-
etary boundary layer flows are of course expected to
be very similar near the surface) with the mixing-
length given by

1
et @
and l,, = 80m. This mixing-length solution is shown
to illustrate what might be considered an accept-
able variation of non-dimensional shear within the
nominally logarithmic region. The simulation results
show, for both the velocity and scalar profiles, a se-
vere error. The non-dimensional shear shows a max-
imum value of about 2 at a height of order the char-
acteristic height of the matching region. Such errors
are we believe detectable in all past high Reynolds
number simulations of comparable boundary layers.
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Noting that the shear stress profile is forced by
momentum budget considerations to be realistic we
can comment on what features of the simulation may
have caused the problem. The most trivial cause
would be too small a value of subgrid-scale mixing-
length in the matching region. It the resolved mo-
tions remain unchanged then a correct velocity pro-
file must be obtainable by use of a suitable value
of mixing-length, The other cause might be the re-
solved motions. Two not entirely separate changes
to the resolved motions might resolve the problem.
Firstly an increase in the resolved %W would cause
the subgrid part of i to reduce and hence would
reduce the mean velocity gradient. Alternatively an
increase in the size of the resolved motion defor-
mation would, for fixed subgrid mixing-length and
mean velocity gradient, lead to an increased subgrid
shear stress. However, because the shear stress pro-
file is forced to be realistic, the subgrid stress cannot
increase and so the mean velocity gradient would de-
crease. Similar considerations apply to the passive
scalar gradients.

300 k] v T T ¥ T T T T
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Fig 1' Profiles of the non-dimeasional shear and passive
scalar gradient in the planetary boundary layer simulation
without backscatter Only the lower part of the domain is
shown Also shown is the non-dimensional shear obtained
from a mixing-length solution with the mixing-length given

by Eq (2).

In order to investigate this problem a series of
simulations of infinite Reynolds number turbulent
flow in a free surface channel flow were conducted
as described above. The first question to address
is whether the error will vanish as the resolution in-
creases. Profile D in Fig. 2 is from a simulation
with the same shape for the profile of [ as used with
the planetary boundary layer simulation but the fil-
ter scale and mesh spaci~gs are a factor of about 3
to 4 smaller. The velocity profile shows a qualita-
tively similar error but the height scale over which

it occurs is reduced, and the size of error is also
slightly reduced. I consequence of these quanti-
tative changes the solution is more satisfactory but
Jhe arror remains substantial. Velocity profiles B, C,
D, E, F and G show the consequence of varying the
mixing-length profile and the filter scale with fixed
mesh spacing. These changes alter the height scale
of the error but none produce a marked improve-
ment, These tests suggest that perhaps no mixing-
length variation with height would be satisfactory.

300 gt~

200 |-

z(m)

100 |- N

Fig. 2: Profiles of the non-dimensional shear from simulations
of flow in a free surface channel (without backscatter). Only
the lower part of the domain is shown. Profile B is from a
simulation with {y = 2m and n = 1 in Eq. (1). Profile C
is from a simulation with lp = 3m and n = L. Profile D
is from a simulation with lp = 3m and n = 2. Profile E is
from a simulation with lp = 3m and with [ = x(z + 29)/[1 +
h%/(6+ h)]/?, where h = k(2 + 20)/lo, replacing Eq. (1).
This mixing-length profile was chosen by estimating the profile
which would correct profile D, assuming that the resolved
stress remained the same. Profile F is from a simulation with
lo = 5m and n = 2. Profile G is from a simulation with
ly = 5m and n = oo. Profile A is the non-dimensional shear
obtained from a mixing-length solution with the mixing-length
given by Eq. (2)

In the matching region the simulation seems to
lack resolved stress. A possible cause of this prob-
‘am is the neglect of statistical fluctuations in sub-
grid stress. Fluctuations in subgrid stress will scat-
ter energy frorm the subgrid scales to the resolved
scales. This process is further likely to be of max-
imum importance precisely in the matching region
where the subgrid stresses are large but the subgrid
length scale is still comparable with the scale of the
filter operation.

THE BACKSCATTER MODEL

It has long been recognised that subgrid-scale
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stresses should have stochastic fluctuations and that
these fluctuations lead to a backscatter of energy
from the subgrid scales (e.g. Leslie and Quarini
1979, Kraichnan 1976). We can consider the ve-
locity field as divided into a resolved part (u) and
a subgrid part u — (u) with the subgrid part giving
rise to the subgrid stresses. A deterministic subgrid
model (such as the Smagorinsky model) relates such
subgrid stresses to the gradients of the resolved (u),
(v) and (w) fields. If we consider that the subgrid-
scale eddies have a characteristic length scale [ and
characteristic time scale T', then, from consideration
of the statistics of forming the average stress over a
volume of scale [; from eddies of scale [, the variance
of the stress (for a fixed resolved velocity field) will,
for 1 < 1y, be proportional to (1/1;)%ul,, where uy
is a local subgrid turbulent velocity scale. Also, if |
is of order I; we expect the stress variance to be of
order u},. In both cases the stress will vary on a time
scale T. Based on these ideas we assume a stress
variance 02,,,,, & ({/1;)°ul, and a consequent rate
of energy backscatter given by
2 3
Do o ullT.
/ !
Noting that T' o I/u.; and that the dissipation € is
proportional to u‘_‘,/l, we obtain an energy backscat-
ter rate

=

l 2
C[} <[—0) €.

Here Cyp; is a constant which is expected to be of
order unity.

Considering the application of the filtar operation
to a turbulent flow, it is physicaliy clear that if the fil-
ter is applied to widely separated flow volumes then
the values of subgrid stress fluctuations will be un-
correlated. If however we consider points closer in
space than the filter scale, the subgrid stress fluctu-
ations will be correlated. We therefore have a ran-
dom stress field varying on the filter scale. On scales
greater than the filter scale the random stress val-
ues imply an energy backscatter with a k* spectrum
in accord with theoretical expectations (Kraichnan
1976).

In implementing the backscatter, we follow Leith
(1990). Instead of introducing random stresses we
adopt a random forcing derived from a vector poten-
tial. The spatial spectrum of the potential is white
on scales greater than the filter scale leading to the
desired k' spectrum of the energy backscatter. The
random stresses are uncorrelated from one time-step
to the next and have a magnitude chosen to en-
sure that the rate of energy backscatter is correct.
Backscatter of scalar variance was also included for

completeness; however, as a result of the passivity
and iinearity of the scalar, this has no influence on
the mean profiles.

An estimate of Cz can be made using EDQNM
theory (Chasnov 1991). Using the backscatter ex-
pressions in Chasnov (1991 a value of Cpy = 1.4 is
obtained for an infinite inertial subrange (Chasnov
private communication). In this study Cp is found
to have profound effects and we are able to see what
value of Cp gives the best resuits. As noted helow,
a value of about 1.4, when used with n = 2 in Eq.
(1), is found to be optimal. Owing to the various
assumption in the implementation this empirically
determined value should not be considered precise.
We are however ancouraged by “he evidence that Cp
is of order unity and in agreement with Chasnov's
value,

RESULTS OBTAINED WITH BACKSCATTER

The backscatter model described above has been
applied in simulations of the neutral static stability
planetary boundary layer. Fig. 3 shows the result-
ing vertical profiles of non-dimensional velocity shear
and passive scalar gradient for n = 2 and Cp = 1.4.
They can be compared with the profiles in Fig. 1
obtained without backscatter. The simulation with
backscatter has a realistic velocity profile. The scalar
profile is also very much improved and we note the
possibility that an accurate profile might require the
Prandtl number in the subgrid model to vary in the
matching region.

300 | 1=ty Lae it

200 |- .
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Fig. 3. Profiles of the non-dimensional shear and passive
scalar gradient in the planetary boundary layer simulation with
backscatter. Only the lower part of the domain is shown. Also
shown ls the non-dimensional shear obtained from a mixing-
lerigth solution with the mixing-length given by Eq. (2).

In the simulation without backscatter the sur-
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face stress u? has a value of 0.141 (Geostrophic
drag coefficient C¢ = 1.41 x 107°) whilst with
backscatter the surface stress increases to 0.189
(Ce = 1.8 x 107%). This latter value is in better
agreeraent with observations, with the Rossby num-
ber similarity coefficients estimated by Grant (1986)
suggesting a value of C; = 2.0 x 107 (Grant 1986)
for these conditions. We note the limited resolution
used in the present study and do not seek detailed
comgarison with planetary boundary layer data.

The conclusion here is that the backscatter has
had entirely beneficial effects. Other flow statistics
either show little modification or are improved. It is
perhaps especially significant that the velocity gra-
dient problem did not improve significantly with in-
creased resolution. Without remedy, this problem
would seriously impair the value of high Reynolds
number simulations. The success of the backscatter
model gives hope that the optimism concerning the
many future applications of large-eddy simulation is
well founded.

Future high resolution studies should allow more
careful refinement of the stochastic model. In partic-
ular it would seem desirable to quantify the backscat-
ter process by analysis of high resolution velocity
fields in either direct or large-eddy simulations.
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ABSTRACT

An investigation of the fully-developed, statistically
stationaty, axisymmetric turbulent flow through straight
circular pipes is presented using the large eddy simulation
(LES) technique. This flow offers the simpliaity of inhomo-
gensity of the mean quantities in one direction only. The
simulation is done in a cylindrical coordinate system. Spe-
cial attention is paid to the singularity at the pipe center
line. To verify the quality of the simulations, statistical
results for high Reynolds number are compared with ex-
perimental data of Laufer (1954), Lawn (1971) and Perry
& Abell (1975) and good agreement is obtained. In addi-
tion the instantaneous turbulent flow field 1s visualized and
discussed.

NOMENCLATURE
Cy,C2 constants of the SGS model
o8 deformation tensor
Esgs subgnd scale energy
P pressure
R L pipe radius and length
R globai Reynolds number, Re = u,2R/v
Re, Reynolds number, Re, = u,R/v
Uel, Upy Uy center line,bulk flow and friction velocity
Vs Vzy Vipy Ur velocity components
A length scale
Adq giid cell surface
AV grid volume
U, Viurd kinematic and turbulent viscosity
Ear 2,057 coordinate dircctions
(longitudinal, circumferential, radial)
Tad shear stress tensor
$ap Kronecker symbol
<¢> statistical mean value
é surface or volume averaged (GS) quantity
! deviation from grid scale quantity
& (Reynolds) fluctuating quantity
INTRODUCTION

The fully-developed, statistically axisymmetric turbu-
lent flow through straight circular pipes has been the sub-
ject of numerous investigations in the past which were most-
ly of experimental nature. Some of these studies show
differences in the reported rms-turbulence level of up to
25% which are due to insufficient flow development length,
ill-conditioned hot-wire calibration method, maccuracy in
wall-distance measurement and scveral other factors. This
is important to know when computa- onal results are judged
on the basis of such data.

One numerical study, namely that of Leonard & Wray
(1982), seems to us remarkable because it treats the singu-
larity on the pipe axis in a rigorous manner and presents
a new numerical technique 1n which spectral expansions of
the velocity componcnts in the azimuthal and streamwise
directions and global polynomials in the radial direction
are used. 'Tests have been perforined for - Reynolds num-
ber of 3000 corresponding to a flow regim * where interest-
ing transitional phenomena occur. One drawback of this
new method is its limitation to periodic flows which means
that practical flow simulations like sudden expansions and
contractions or vortical flow leading to breakdown cannot
be handled. Such complex flow situations may be suitably

treated with finite difference techniques like the present pro-

vided a proper way is found to take care of the singularity on

the axis. The studies of Orszag & Patera (1983) and Priy-

mak, Rozhdestvensky & Simakin (1982) are like Leonard &

:/)Vray’s work direct simulations at very low Reynolds num-
er.

We do not know of any numerical investigation of the
instantaneous high Reynolds number flow field in a straight
pipe. To our knuwledge the present paper presents the first
large eddy simulation of such a flow.

In the following sections we discuss the filtered equa-
tions and the subgrid scale model, the integration technique
along with boundary and initial conditions. The results for
a global Reynolds number of 50000 comprise statistical as
well as instantaneous flow quantities.

BASIC EQUATIONS

The equations describing the resolvable (grid scale,

GS) flow quantities are derived from the integral conserva-
tion equations for mass and momentum apphed to a finite
rid volume AV (’volume balance procedure’, Schumann
%1975)). The GS quantities are defined as averages over
the grid volume AV, or their corresponding surfaces AA,.
Using a cylindrical grid and staggering of variables the
filtered equations have the following non-dimensior:al form:

Mass:

2 (AAQ,U_“ I(Ea+A£a/2) —AAaTa |(e,.—A£a/2)) =0,

[+

€a=(z)90vr)$ (1)
Momentum:
dvg
AV-E- +
D (B As (7 75 + Vvg + Pbap — TaB) g +aes2)
-]
~ DAp (U5 T5 + ViU + Pap — Tap) Ly -a¢0/2)
— (Term), = 0, (@)

where £ describes the staggered position.
(Term), contains the additional cui vature terms:

(Term), =0,
AV T
(Term)lp = —1'_ (—v‘ﬂ Ur = VyUp + qur)é; y (3)
AV —_—
(Term), = - (T + Vv, + P = Ty
The shear stress is defined as

urR

4)

1 —
Tap = —é:Dag , where Re,=
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The deformation tensor is determined from the filtered ve-
locities, viz.

28,57 8,0+ 8.0, 6T+ 6T

28,55 +7) ré(%E) + 48,7 | . (5)

w)
2
li

26,07

6o represents a central finite difference operator
The SGS stresses —uvg, vy, which are a result of the ve-

locity decomposition into a GS part and a SGS part Lave
to be expressed in terms of GS quantities. This is done by
using Smagorinsky's (1963) model:

”:,1':; = "Vlurb-D:,E (6)
. 1
Vigrs = mm(lm.,;,ClA)zﬁDa;g2 (7
Lz = 0.14 - 0.08r% — 0.06r* Nikuradse (1932) (8)
Cy =0.1 Deardorft (1971)

The length scale A 1s calculated from the mesh size Near
the wall the mixing length l,,,,, replaces the value for C; A
in the case of coarse grids. We have tested two differcnt
formulas for A, which show significant differences near the

center line

A = AVY? = (rArdpAz)' P, 9)
A= \/(rAcp)2 + (L;r)Z + (Az)? (10)

The first expression, 89) is due to Deardorff (1971) Em-
ploying this, the length scale A vanishes at the axis. This
leads to an eddy viscosity which is also zero in this region.
The second expression, (10) 1s taken from Bardina, Ferziger
& Reynolds (1980) and produces a finite value for the length
scale at the axis giving a more physically reabistic non-zerc
value for the eddy viscosity Figures 1a,b compare these
length scales and show their influence on the tume averaged
eddy viscosity

NUMERICAL MODEL & BOUNDARY CONDITIONS

The momentum equations are integrated in time ou a
staggered grid using a second-order leapfrog scheme. The
use of Chorin’s (1968) projection method leads to a Pois-
son equation for the pressure which 15 solved with direct
methods Fast Fourier transformation m axial and circum-
ferential directions reduces the 3D problem to a set of 1D
Helmholtz problems which are solved in parallel with a tri-
diagonal-matrix algorithm. The use of Fourier transform
implies periodic boundary conditions in the streamwise and
the circumferential directions. Resolution restrictions re-
quire special formulations for the wall boundary conditicns
According to Schumann (1975) the wall shear stress compo-
nents arc 1n phase with the tangential veloaity components.
In the model for the circumferential stress a modincation
proposed by Piomelli et al (1989) is adopted which replaces
the proportionality factor by that computed for the stream-
wise direction. At the pipe center line no boundary condi-
tions are needed in the present finite volume formulation.
Since the grid surface AA, goes to zero the momentum and
mass flux is zero too. The first mesh volume needs some
special treatment only due to the staggered grid which is
used to integrate the momentum equations. Minor approx-
im=tions become necessary in the diffusion terms in which
variables must be specified at positions where they are not
detined.

For the very first simulation initial values for the veloc-
ity field have to be specified. This is done by adding random
velocity fluctuations to empirical mean flow distributions.
The latter are specified by setting < 7, > and < 77 > to
zero, < T; > is calculated according to a power law. The
fluctuations are Gaussian randorm numbers which are nor-
malized to one, weighted with experimental rms-values and
made divergence free by aprlying the Poisson solver once.

GEOMETRY AND FLOW PARAMETERS

The real counterpart of our numerical experiment is a
four diameter long section of a smooth pipe in which the
turbulent flow is fully developed The characteristic length
for nondimensionalization is the pipe radius R. In terms
of R the computational domain has the size of 8x27x1 in
the (2, ¢, r)-cylindrical coordinate system and the Reynolds
number based on u, is Re,=1100. Using a 128x64x16 grid
‘he minimal dimensionless distance to the wall 1s y+=34.
Grid and geometry are illustrated in figure 2. The chosen
Reynolds number is equivalent to a global Reyr.olds number
of Re=50000, which corresponds to Laufer’s (1954) exper-
iment. The grid is equidistant in the r, z-directions. Cells
which are nearly 'isotropic’ can be found at r=0.6. As a
result of the flat cells near the center line, stability requise-
ments impose a very small time step At=5-10"4. The whole
simulation takes 90 characteristic times To=L /u, time av-
eraging starts after 367p and correlations have built up after
56Tp. Such a simulation takes about 10 CPU-hours on a
CRAY-YMP.

RESULTS

There are many ways to extract information from LES
data. First of all we like to look at the behaviour of sta-
tistical flow quantities, because they allow for comparisons
with experimental results. This is done in the first part of
this section. In the second part we investigate and visual-
ize instantaneous flow quantities, the formation of typical
flow structures and examine their behaviour at critical po-
sitions such as the pipe center line. Results of the first part
give us confidence in the quantitative accuracy of the shape
and dynamics of large scale structures treated in the second
part.

Part 1: Statistical quantities

Since the mean flow is homogeneous in the circumfer-
ential and longitudinal directions there is only one nonzero
mean velocity cormponent, v,. Figure 3 shows the radial
distribution of v, non-dimensionalized with the mean cen-
terline velocity in comparison with data of Laufer (1954).
The difference between the simulation and the experiment
near the pipe wall are due to the small number of grid
points in radial direction Recall that the pipe radius is
divided 1nto 16 cells only. Finer grids would of course do a
better job in resolving the steep near wall gradients, they
are, however, more expensive. The logarithmic represen-
tation of v, in terms of u,, in figure 4 reflects this lack
of resolution, in the fiist grid point at least. The dashed
line marks Coles’ (1968) logarithmic law and triangles cor-
respond to experimental data of Perry & Abell (1975) at a
global Reynolds number of 78-10*. The rms-values of the
three velocity components are compared with exper.inents
in figure 5. The computed profiles contain a resolved (GS)
part and a subgrid scale (SGS) part according to the defi-

nition
12 2 ¢
Va,RMS = ([< VLS > +§Escs- {11)

Esgs = Viury : (12)
(C2A) ‘
C; = 0.094 Deardorff (1971) .

Our result for the longitudinal component lies within the
bandwith of experimental error. The low level of Laufer’s
data is discussed in Perry & Abell’s (1975) paper. The
obviously too low level of the fluctuations computed near
the centerline can most likely be attributed to the flat grid
cells there. Otherwise the LES performs well and leads
to good agreement with the experiment. The total shear
stiess in figure 6 consists of a GS-part (solid line), a SGS-
part (dashed) and a viscous part (dashed-dotted) and shows
the analytically expected linear shape. Figure 7 presents
the (vy,v,)-correlation coefficient which reflects very good
agreement with Laufer’s experiment. An often measured
and very sensitive quantity is the longitudinal power spec-
trum of the three fluctuating velocity components. Figures
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8a,b compare spectra measured by Lawn (1971) with our
LES data at two different radial positions. The agreement
is good at low and moderate wave numbers. The steep
fall-off of the spectra for higher wave numbers at position
r/R=0.35 may be due to the decrease in two cell surfaces
for r—0. Our aim in the future is to improve on that using
different grid systems.

Part 2: Instantaneous flow quantities

In figure 9abc the three velocity components reveal
their own typical flow structure. The longitudinal veloc-
1ty represented in figure 9a is the only component with a
nonzero mean velocity implying steep gradients near the
pipe wall. It produces very elongated structures without
especially remarkable features. The v,-component in fig-
ure 9b on the other hand is organized in large scale struc-
tures having a typical inclination angle with respect to the
wall. Figure 9c illustiates the spotty character of the v,-
component. It can be observed from all the three velocity
components that the near wall region is dominated by high
intensity fluctuations whereas the region near the center-
line shows only weak fluctuations. This is confirmed by the
fluctuating velocities in a plane perpendicular to the axis in
figure 10ab. Instead of v, and v} the cartesian components

vy and v, are plotted. Special attention should be given to
the centerline region. The figures do not show any obvious
artificial influence of the axis, i.e. large scale structures are
free to cross the axis. A snapshot of fluctuating velocity
vectors in figure 11 demonstrates the possibility for such
crossings. Finally a perspective view of the contour surface
of the instantaneous longitudinal velocaity is presented in
figure 12 for v,=0.95u,. The highly rugged surface gives
an impression of the ongoing dynamics.

CONCLUSIONS

The presented data of fully-developed pipe flow at high
Reynolds numbers demonstrate that cylindrical coordinates
can be quite successfully used in large-eddy simulations and
provide good agreement with experimental results. Never-
theless improvements should be made in the near future
avoiding too clongated mesh cells and thus too strong re-
strictions 1n the éourant numbers. Further work is going
on in this direction.
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LARGE-EDDY SIMULATION OF TURBULENT FLOW
OVER AND AROUND A CUBE IN A PLATE CHANNEL

H.Werner and H.Wengle *

Institut fiir Stréomungsmechanik und Aerodynamik
Universitat der Bundeswehr Miinchen, LRT/WE7
8014 Neubiberg, Federal Republic of Germany

ABSTRACT

The concept of large-eddy simulation (LES) has been
applied to simulate turbulent flow over and around a single
cube mounted on the bottom of a plate channel for a Rey-
nolds number of 50000 (based on the incoming mean bulk ve-
locity and obstacle height). Here we present, as a first part
of the evaluation of the data, mainly results for the three-
dimensional mean fields (velocity, vorticity, Reynolds stress,
enstrophy, helicity) and a few interesting views of the instan-
taneous fields. Having cngincering application in mind, this
flow problem represents an ideal casc for testing and evalna-
ting solution concepts like LES or solutions of the Reynolds-
averaged Nawvier-Stokes equations.

INTRODUCTION

The purpose of our work is to apply the concept of large-
eddy simulation (LES) to turbulent flow over and around flow
obstacles with sharp edges and corners. The work is moti-
vated by the need for applications of the LES concept to
engineering applications involving (a) high Reynolds num-
ber flow, (b) three-dimensionality of the mean flow and
(¢) non-periodic boundary conditions in the main flow di-
rection. In this paper we present results from a numeical
simulation of turbulent flow over and around a cube mounted
on the bottom of a plate channel. For the example presen-
ted here, we selected (a) a Reynolds number of about 50000,
based on mean bulk velocity and obstacle height (which is
equal to the channel half width), (b) a three-dimensional
obstacle, creating a flow field without any homogeneous di-
rection, which makes it necessary to provide the statistics by
time-averaging only, and (c) a single obstacle, i.e. not al-
lowing the use of periodic boundary conditions in the main
flow direction

Earlier related work on LES of turbulent flow over a
periodic arrangement of cubes in a simulated atmospheric
boundary Jayer has been published by Murakami, Mochida &
Hibi (1987), results for the flow over a periodic arrangement
of square ribs in a channel have been presented by Kobayashi,
Kano & Ishibara, (1985), and results from our own earlier
work on flow over a single square rib on the bottom of a plate
channel can be found in Werner & Wengle (1988, 1989).

MATHEMATICAL MODELS,
SOLUTION TECHNIQUE AND
EVALUATION OF THE STATISTICS

The governing equations describing the resolvable flow
quantities (grid scale, GS) are derived from the integral con-
servation equations for mass and moraentum applied to a
finite grid volume AV = Az * Ay = Az following the 'vo-
lume balance method’ of Schumann, U. (1975). From this it
follows that GS quantities of the three velocity components

* to whom correspondence should be sent

Unsla = 1,2,3) are defined as averages over the corresponding
surfaces, Ad,(a = 1,2,3) of the grid volumes, AV,

The subgrid scale (SGS) stresses arising from the nonli-
near convection terms are evaluated by the Smagorinsky-Lilly
model (with ¢; = 0.1) which relates the subgrid stres-
ses to the GS velocity field via an eddy viscosity model. In
grid volumes next to walls, we used for the mixing length the
smaller value of x*z, and 0.1+ (Az + Ay« Az)/? respectively
(zq is the distance normal to a wall).

The geometry of the computational domain and of the
flow obstacle is evident from figure 1. Measured in units of
the reference height H (height of the cube) of the problem,
the dimensions of the domain were (X,Y,2)=(10,7,2), and for
the results presented here we used (NX,NY,NZ)=(144,92,58)
grid points.

The governing equations are solved numerically on a
steggered and non-uniform grid using second order finite-
difierencing in time and space (explicit leap-frog for time
discretization, central differencing for convection terms and
time-lagged diffusion terms). The problem of pressure-velocity
coupling is solved iteratively (point-by-point relaxation).

The direct results from LES are the time-dependent and
three-dimensional data fields for the GS quantities of the
three velocity components and the pressure. Figure 2a shows
a sample of the instantaneous flow field in a vertical plane
through the center of the cube. By time-averaging of the
instantaneous flow field, the mean flow field (fig. 2b) is ob-
tained, and as soon as the mean velocity field has reached
stable (i.e. time-independent) values, the fluciuating velocity
field (fig. 2c) can be evaluated as the difference of the two
fields, which leads to the classical Reynolds-decomposition of
a turbulent flow field. Finally, from the fluctuating fields, the
root-mean-square values, e.g. for velocity, vorticity and pres-
sure fluctuations can be calculated, as well as the Reynolds
stresses and other statistics desired.

INFLOW AND WALL BOUNDARY CONDITIONS

At the inflow section, we used at cach time step the in-
stantancous flow field of a LES result of the corresponding
(fully developed) channel flow (see figure 1). Boundary con-
ditions at horizontal and vertical walls were specified by as-
surming that at the giid points (P) closest to the wall, (a)
the instantaneous velocity components tangential to the wall
(up,vp) are in phase with the instantaneous wall shear stress
components (7ys, 7ys) and (b) the instantaneous velocity dis-
tribution is assumed to follow the linear law-of-the-wall u* =
z* for z* < 11.81, and for 2zt = z,, > 11.81 it is continued
by a power-law description of the form ut = A(2%)? (with
A=8.3 and B=1/7). The velocity components tangential to a
wall at the grid point next to the wall (up, vp) can be related
to the corresponding wall shear stress components by inte-
grating the velocity distribution over the height of the first
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grid element, and the resulting cxpression can be 1esolved
analytscally for the wall shear stress component, i.e.

2
(_ 2ulup] < B vy
[Tup) = e for  Jupl g 2pA:A
5
_ 1-B e/l B 48 14+ B/ u \B
ITubl-P[-'—-—z A F(p—A;) + - (;)E) ,uP'
L INE
for  fupl> 2PA=A

(Az is the vertical width of the grid volume next to the
wall. 7 is the upper boundary of validity of the lincar-law-of-
the-wall). Though theoretically not fully satisfying, fiom an
apphcation point of view this procedure offers the advantage
that the averages < 7, > and < up > are not required (in
patticular in flow situations in which these variables may be
slowly varying in time), and numerical problems are avoided
in evaluating the commonly used relation 1,4 = up < Ty >
/ < up > in reattachment regions. In consequence of the
experimental results fiom Ruderich & Fernholz (1986) we
have abandoned the use of the logarithmic-law-of-the-wall.

DISCUSSION OF RESULTS AND CONCLUSIONS

The results shown in this paper are made dimensionless
using a reference height L,y = H (H=cube height) and a
reference velocity Uyep = Uy (Up=mean bulk velocity, sce
fig. 1). Note, that in our nomenclatuie, Z is the coordinate
normal to the walls of the plate channel.

LES provides insight into the time-dependent large-scale
structure of a turbulent flow field. An nstantancous view of
the velocity vectors projected onto a vertical plane through
the center of the cube (fig 2a) exhibits an extremly compli-
cated flow field. The interaction of differer:t processes like the
development of a three-dimensional shear layer, the reattuch-
ment of flow on the bottom plate behind the flow obstacle,
the recirculation of highly turbulent flow and its reentrain-
ment into the free shear layer takes place within a spatial
regime which is significantly smaller compared to the case of
flow over a square-rib, sce Werner & Wengle (1988, 1989):
the mean recirculation length is about 2.0 for the flow over
a cube, and about 7.0 for the square-nib. Strong horizontal
fluctuations in the lateral direction close to the walls can be
observed in the small recirculation 1egimes in front and on
top of the cube and in the large 1ecirculation 1egime behind
the flow obstacle (fig. 4) The creation of strong hotizontal
fluctuations by splashing down ol tongues of fluid material
can be seen in figure 5.

The mean stiucture of the flow field (e g. mean velo-
city, mean vorticity, second order statistics, mean enstrophy,
mean helicity) can be provided by time-averaging only. For
the results shown here, we started everaging for the first-
order statistics after 60 veference times, samples for the first-

order statistics have been collected over 160 reference times
(taking one sample at every 40th time step), samples for the
second-order statistics have been collected over the latest 110
reference times. One reference time is equivalent to the time
a tracer particle needs to travel with bulk velocity Uy (sece fig.
1) over a distance of one obstacle height H. Figure 1 shows
vertical profiles of the mean U-velocity component; the pro-
files are quite smooth, indicating that a sufficient number of
samples has been taken for the first-order statistics. From
distributions of the mean U-velocity component close to the
bottom plate (Z=0.01=location of first vertical grid point)
and close to the top face of the cube (2=1.01), the different
mean recirculation lenghts can be approximately determined
to XF=0.9, XR1=1.75, XR2=0.2 and XT=0.75 (fig. 3a,b).
In a vertical cut normal to the main flow direction at a di-
mensionless position X=0.88 behind the cube (fig. 3d), two
pairs of counter-rotating mean vortices can be observed (one
pair very close to the side walls of the cube, and the other
one at Y=+1.5 and Y=-1.5 from the center of the cube). In
that vertical plane, the lateral shape of the mean shear layer
also becomes visible (fig 3d).

As an example for the second order statistics, figure 6
shows vertical profiles of the Reynolds stress — < uw > and
of the tuibulent energy (in a vertical plane through the center
of the cube). The smoothness of the profiles is not quite
satisfying, indicating that still more samples are desirable
for the second-order statistics.

The evaluation of the mean vorticity field in figure 7 gives
an mtcresting view of the geometry of the mean shear layer
behind the cube. In addition, figure 7a shows on the right
hand side the mean vorticity vectors projected onto vertical
planes normal to the main flow direction (the length of a
vorticity vector is proportional to the strength of the local
mean vorticity) On the left hand side, isolines of the mean
total enstrophy are shown, indicating the same geometry of
the 3D shear layer as exhibited by the arrows of the velocity
vectors in fig. 3d An interesting perspective view of the
shape of the 3D mean recirculation zone is given in fig. 7b by
an isosurface of the mean total enstrophy < w,?+w,?+w;? >
(for an arbitrarily chosen value of 20.0).

Finally, we evaluated the so-called helicity ¥+ & of the
flow field: e.g. fig. 8a shows a perspective view of a mean
Lelicity iso-sutface for a value of 0.25. If the instantancous
helicity density is normalized as cosd = - &/|7]|] it can be
interpreted as the cosine of the angle between velocity vector
and vorticity vector. For example, fig. 8b gives a perspective
view of the instantaneous locations of cosd = 0.90(8 = 25°).
Regions of small helicity values are equivalent to regions of
large valucs of 7 x & (the non-linear termn of the Navier-Stokes
equation in rotation form), in regions of small angles between
¥ and & it is reasonable to expect that the local structure will
be helical {an ideal case would be cosf = 1.0, i.e. ¥ and &
are aligned).

z - U
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X ==\ =S ANan 31 =i =\
= RESmtE: ¥ ¥ 1
== ! ¥ ¥ |
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1.0€40 S = ? ' ==
= —
=
g b . 9
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Fig. 1: Geometry of comp tational domain and inflow boundary conditions

eft:

channel flow N * NY * NZ = 54 92 * 58 grid points

zight: flow over cube NX * NY x NZ = 144 » 92 » 58 grid points
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Fig. 8: Isosurfaces of helicity

Fig. 8a: mean helicity < 7-& >

Fig. 8b: ' .otantaneous helicity density cosf = 7 - d/|0)|&] = +0.9

From the results presented here it can be concluded that
the case of turbulent flow over a cube 1n a plate channel 1c-
presents a flow problem which is very well suited for testing
and vahdating numerical simulation techniques and turbu-
lence models. Coriesponding experimental data will be avai-
lable in the near future from Larousse, Martinuzzi & Tro-
pea (1991). For applying the solution concept "large-eddy-
simulation” about 300 CPU hours on a CRAY/Y-MP must
be spent to provide sufficiently stable second-order statistics
For every mean variable to be evaluated a three-dimensional
array must be assigned in the computer programm , and the
number of grid points used for the results presented here
chould be considered to be a minimum to reach satisfying
agreement with experimental data for the second-order sta-
tistics and to provide sufficiently accurate results nceded for
the validation of statistical turbulence models involved in sol-
ving the Reynolds-averaged Navier-Stokes equations.
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NUMERICAL SIMULATION OF TURBULENT CONVECTIVE SHEAR FLOWS
OVER WAVY TERRAIN

A. Dérnbrack, K. Krettenauer and U. Schumann
DLR, Institut fir Physik der Atmosphére
W-8031 Oberpfaffenhofen, Germany

ABSTRACT

Thermal convection of a Boussinesq fluid in a
layer confined between two infinite horizontal
walls is investigated by large eddy simuiation
(LES) for zero and finite horizontal mean motion.
The lower surface height varies sinusoidally in
one direction in order to investigate the effect of
ccmplex terrain on the turbulent motion. Several
cases are considered with amplitude § up to
0.15H and wavelength 1 between 1H and 8H In
the windless cases, the gross features of the
flow statistics such as profiles of turbulence
variances and fluxes are found to be not very
sensitive to the varialions of wavelength, ampli-
tude, domain-size and resolution whereas
details of the flow structure are changed con-
siderably. The mean flow causes a systematic
change of the temporal development of the flow
structure.

INTRODUCTION

Much is known about thermal convection over
homogeneous horizontal surfaces. Land sur-
faces are, however, rarely homogeneous. They
are often undulated and form hilly terrain. Even
when the amplitude of such hilly terrain stays
below the mean height of the atmospheric
boundary layer, one might expect that topogra-
phy has appreciable effect on the flow structure.

From field observations on the structure of the
atmospheric convectlive boundary layer, vatious
authors (see for a review Kretlenauer and
Schumann, 1991} found that “gently rolling ter-
rain” has generally little effect with respect to
the intensity of turbulence but changes the flow
structure as measured by the characleristic
length-scales of the motions. E.g. Ksimal et al.
{1982) found a 30 % increase in the length-scale
of the spectrum of vertical velocity and a 60 %
reduction of the length-scale of temperature.

Most previous LES considered flows over plane
surfaces (Schmidt and Schumann, 1989, Nieuw-
stadt, 1990). Kreltenauer and Schumann (1989)

investigated the thermal convection for various
finite Rayleigh numbers and zero mean flow
over sinusoidal waves by means of direct simu-
lation. In this paper, we exlend the previous
study to LES for infinite Rayleigh number
including the case of nonzero mean wind speed.
The effect of topography, turbulent convection
and mean wind on the turbulence structure is
investigated for a Boussinesq fluid confined in a
layer between two infinite horizontal walls.

METHOD AND MODEL PARAMETERS

The lower surface height h varies sinusoidally in
the streamwise direction with an amplitude § up
to 0.15H and a wavelength 4 of 10H to 40H
(inclination up o 439) in different cases, where
H is the mean fluid layer height. Ve imple-
mented a subgrid-scale (SGS) model which is
similar to that used by Schmidt and Schumann
(1989) into a numerical scheme which uses ter-
rain following coordinales according to
n(z.h) = H(z — H)/(H — h). The numerical method,
which employs a second-order finite-difference
scheme, follows proposals of Clark {1977).

Constant heat flux {temperature flux Q,=w'%’,)
is prescribed at the lower surface of the fluid
tayer. The momentum fluxes at the lower rough
surface (z/H =1.10 *) are computed using the
Monin-Obuchow relationships. At the flat top an
adiabatic frictionless boundary condition is
applied which approximates a strong capping
inversion of an atmospheric convectlive bounda-
ry layer. For cases U # 0 we use the BKD boun-
dary condition which reduces the reflection of
gravily waves as described by Schmidt and
Schumann {1989). In both horizontal directions,
the model domain extends over the same lenglh
(from 4 to 8 H) with periodic lateral boundaiy
conditions. The horizontal mean velocity in the
x-direction, i, is prescribed and varies between
0 and 4w., where w. = (fgQ,z)"® (z,=H for the
runs with & = 0) is the convectlive velocity scale
(# = volumetric thermal expansion coefficient
of the fluid, g = gravity); & =HJw. is the con-
veclive tlime-scale.
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RESULTS

a) Convection for zero mean horizontal flow
speed

For flat surfaces the flow statistics have been
found to compare very well with measurements
taken by Adrian et al. (1986) in a comparable
laboratory study. Examples of such ccmparisons
are shown in Fig. 1.

For convection over undulating terrain, we have
identified some rather surprising effects of .the
unidirectional terrain-variation on three-dimen-
sional motions. In particular we found that a
two-dimensional model would be misleading
since the results demonstrate that three-dimen-
sional motions are enforced by terrain. So, we
can observe circulations with axis parallel as
well as perpendicular to the wave crests, which
cannol be predicted with two-dimensional mod-
els. On the other hand, undulating terrain has
rather small effects on the mean turbulence
profiles as long as the wavelength 1 is less than
4 H and the wave amplitude J less than 0.15 H.

In Fig. 2 we see convection patterns which are
composed of large-scale components at scales
of the order H plus small-scale random turbulent
motions. The flow structure is little affected by
the sinusoidal waves for A/H <2 and §/H < 0.15.
But, they persist over longer time intervalls (at
least 5 convective time scales t.) in the presence
of surface waves which fix the motion patterns
(Fig. 3) Our resulls confirm field observations
with respect to changes in the horizontal length
scales (Kaimal et al., 1982). A complele doc-
umentation was published by Krettenauer (1991)

b) Convection for posilive mean horizontal flow
speed

As a next step in our invesligations »wards
realistic atmospheric cases, we began to simu-
lale the flow over sinusoidal waves with pre-
scribed mean horizontal flow velocity i7. The aim
of this part of our study is to investigate the
combined influence of the undulating surface,
the convective motion and the mean advection
of wind on the turbulence structure. We chose a
special configuration which is relevant for appli-
cations in atmospheric physics. The domain size
is typical for the meso-scale of atmospheric
molions. The wavelength is 1/H = 1 and the pre-
scribed temperature flux at the surface is
Q. = 0.1 Km/s. We compare four cases:

(A)o/H=0, U =0;
(B)3/H=0, U =>5m/s;
(C)6/H =0.05, T =0m|s;
(D) 6|H =0.05, U =5m/s.

10

For all simulations we assumed that the initial
temperature field is stably stratified with an uni-
form gradient 0®/dz ~ 3 K/km. Further, we add
random perturbations ranf to initiate turbulent
motions;
®=300K+-(2-@—-2+ Toeranf .

lir4
Depending on the height of the inversion z, the
ratio U/w. is about 3 to 4 for runs (B) and (D).

Fig. 4a shows the temporal development of ®(y)
(averaged over planes n =const.). These pro-
files look similiar for all runs and mark typical
mean profiles of a convective boundary layer
{superadiabatic lapse rate in the surface layer,
a well mixed layer with d® [ 0z=0, the entrain-
ment zone, and above it the stable atmosphere).
Fig. 4b depicts the temporal evolution of the
volume averaged kinetic energy of turbulent
motion (TKE) which first decreases to a mini-
mum and then achieves an approximately
steady state for times greater 100 min. This
behaviour is caused by the development of the
transfer spectrum in wave number space. The
following interval up to t==200min was chosen
to average the vertical profiles of momentum
flux Gw and heat flux w3 which are displayed in
Fig. 5.

With regard to u'w’, considerably differences
belween the runs can be seen whereas th: heat
fluxes differ only liltle. Tne dillerences are
caused by the effect of mean advection (com-
pare (A) and (C) with (B) and (D) ) as well as the
effect of orography (compare (A) with (C) and (B)
with (D) ). As expected, the absolule values are
larger for runs with 7 # 0 because u'w’ Is pro-
portional to the gradients of mean velocily. For
5JH =0 (case B) | 'w’ | is nearly constant in the
surface layer and decreases monotonously in
the mixed layer. Above the inversion height z,
the momentum flux has a small negative value
which is supposed to originate from the wave
transport and can be denoled by wave drag.
Consistently, | u'w’ | has a larger nearly-con-
stant value for run (D) in this layer. Also the
absolute value in the mixerd layer shows the
influence of the little mountain: a vertically more
extended domain with a larger vaiue of | u'w’ |.

The mean flow causes a systematic change of
the flow structure (Fig. 6). Obviously, as can be
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seen from contour pints of @, the upward motion
causes upwards propagating perturbations in
the stable layer. These oscillations are of an
irregular nature for & =0 whereas for U #0
internal gravity waves grow in the stably strati-
fied troposphe~e. In contrast to the horizontally
homogeneous case, we observe for i =0 in the
layer up to z = z, that the thermals are fixed near
the crest of the hill for all times (Krettenauer
,(1991).

The situation in the well mixed layer is totally
different for runs with mean wind. Due to the
strong shear the updraughts are elongated and
inclined. As argued by Mahrt (1991), these
updraughts become asymmetric with sharp hor-
izontal convergence and sharp horizontal
changes of velocity and temperature at the
upstream edge of the thermals. These so called
microfront zones are generated by horizontal
convergence between faster horizontal motion
of descending air and slower horizontal motion
of the updraughts Orography included, we
observe over the whole integration period
upward flow at the upwind side and downward
flow at the lee-side of the crest. Therefore, we
conclude that the surface undulation triggers
these flow patterns. Also the gravily waves
above them are caused by the joint action of
surface undulations and gradient of mean wind.
The flow streamlines, as indicated by the iso-
lines of ®, oscillate at a comparable amplitude
and have a wavelength of about /2.

Fig. 7a shows the contour plots of the vertical
velocity field w at y=50m. The runs A and C
show randomly distributed thermal elements.
These elements are deformed by the mean wind
in the horizontally homogeneous case B. Due 1o
this deformation in the streamwise direction, the
convective cells grow together and form rolls
with axis in the x-dire ‘t;ion. The vettical exten-
sion of these rolls is closely connecled to the
mean shear. When orography is present, these
flow palterns are overlayed by rolls with axis
paralliel 1o the crest and wave fronts.

Fig. 7b doesn’t show any systematic difference
in the vertical velocity field between the runs.
But, looking at the temporal development of
these rolls we observe more or less stationary
thermals for & = 0, which change their position
only little. For G0 (run B) the rolls walk
through the computational domain and in layers
with stiong mean sheal we aiso have rolls with
axis in the streamwise direction. In contrast lo
run B, these structure are absent for run D and
the thermal is fixed near the crest of the hill over

whole integration time. The mean statistics of
turbulence variances in terms of horizontally
averaged vertical profiles also show surprisingly
little systematic variation between all cases.

The rather good agreement of results from cas-
es with 7 =0 and ¥ # 0 shows that finite differ-
ence errors from mean horizontal advection are
small. However, for larger horizontal wind
speed, we still have to make sure that the flow
structure is only litlle affected by numerical
approximation errors. As a next step, we plan a
systematic study for various flow and surface
parameters as well as a theoretical investigation
of the complicated problem.

CONCLUSIONS

This study presents results from two different
numerical experiments by means of large eddy
simulation. In the first part, we studied the effect
of topography on the turbulence siructure for
thermal convection of a Boussinesq fluid without
mean wind. In order to check the new subgrid-
scale model we compared the LES results wilh
laboiratory measurements. Both resulls agree
very well. The gross fealures of the flow statis-
tics such as profiles of turbulence variances and
fluxes are found to be not very sensitive to the
variations of wavelength, amplitude, domain-
size and resolution whereas details of the flow
structure are changced considerably. The orog-
raphy has the largest effect for 1 = 4H. In the
second part, first resulls have been presented
of studies of combined action of wavy surface,
thermal convection and mean advection. The
mean flow causes a systematic change of the
flow structure. Due to mean shear, roll pattern
with axis along ac well as perpendicular to the
sireamwise direction develop. These were
absent in the windless cases.
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Fig. 1 Root-mean-square fluctuations of a) vertical velocity variance w’, b) horizontal velocity vari-
ance U, ¢) temperature variance T’, versus height for the LES-case with flat surface. Full curves in
a), b) and d) enclose the sum of resolved and SGS contributions, the curvas c) depicts the resolved
part only. The circles represent the experimental resuits of Adrian et al. (1986).

Fig. 2 Influence of wavelength of orography on velocity field in the LES in a vertical plane for var-
ious averages and wavelengths. Left: 1 = H. Right: A =4 H. Top: Instantaneous result at t = 35t.
Middle: Result averaged from t/t. = 30 to 35. Bottom: Result averaged over the same time interval
and in addition over the y-coordinate. Maximum normalized velocity vectors, from top to bottom,

left: 2.20, 1.50, 1.03; right: 2.59, 1.63, 1.34.
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Fig. 3 Velocity field in a horizontal plane for various wavelength (time averaged from t/t. = 30 to
35. Top-left: flat surface; top-right: 1 = H; bottom-left: 1 =2H.; bottom-right: 1 =4H.. Maximum
normalized velocity vectors: 1.69, 1.79, 1.93, 1.91, respectively.
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Fig. 4 a) Temporai evolution of the profiles of mean potential temperature (averaged over planes
n = const.) for run (C). b) Spatially averaged kinetic energy of turbulent motion versus integration

time t for different runs.
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Fig. 5 Turbulent temperature and momentum flux versus height n for runs (A) to (D). All curves are
averaged over planes n =const. and the time period 100 min < t<200min and they depict

resolved and subgrid parts.
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A® = 0.1 K), and u — w-vectors. The velocity in x-direction i1s reduced by 5 m/s for cases with mean
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vector is 3.31 m/s for all runs. The figure shows instantaneous results at
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Fig. 7 Influence of horizontal mean flow 7 in x-direction and of orography on the vertical velocity
field in two horizontal planes n = 50m (a) and n = 600 m (b). The runs are denoted as in Fig.6, the
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ABSTRACT

The vortex-shedding flow past a square cylinder at Re = 22,000
was calculated with various turbulence mode!s. The 2D periodic
shedding motion was resolved in an unsteady calculation, and the
superimposed stochastic turbulent fluctuations were simulated
both with the k-€ eddy-visocity model and with a Reynolds-stress
equation model. For both models, the viscosity-affected near-wall
region was either bridged by wall functions or was resolved with
a simpler one-equation model using a prescribed length-scale
distribution. The k-e model with wall functions does not yield
unsteady vortex motion while the other model variants do. The
two-layer k-e model underpredicts severely the periodic
fluctuations and also the Stanton number and drag coefficient.
The Reynolds-stress-equation models yield considerably better
agreement with experiments, but tend to overpredict the periodic
fluctuating motion and also miss some other details of the flow
behaviour.

1. INTRODUCTION

The flow past slender, bluff structures is frequently associated
with periodic vortex shedding causing dynamic loading on the
structures. For the design of such structures, the unsteady
loading forces must be known and hence methods for predicting
the flow and the forces are of great practical importance. For
situations with low Reynolds numbers, successful calculations
have been obtained for square and circular cylinders by solving
numerically the unsteady Navier-Stokes equations, ¢.g. Lecointe
and Piquet (1989), Franke et al. (1990). For situations with high
Reynolds numbers, which usually occur in practice, stochastic
three-dimensional turbulent fluctuations are superimposed on the
periodic vortex-shedding motion. A resolution of these motions
in a direct simulation is not feasible at present. Tamura et al.
(1990) have reported such calculations without a turbulence
model, but for the higher Reynolds numbers considered by them,
the small-scale turbulent motion could certainly not be resolved
by the numerical grids used. They employed a third-order upwind
differencing scheme which introduces numerical damping and
basically takes over the role of a subgrid-scale model in a large-
eddy simulation. The results obtained by Tamura et al. (1990) are
certainly very interesting and surprisingly successful, but the
approach of relying on numerical damping instead of a subgrid-
scale model requires further examination. The work has shown,
however, that large-eddy simulations are possible for vortex-
shedding flow at high Reynolds numbers, but such calculations
are very costly. Hence, there is still a need for more economic
calculation methods based on the use of a turbulence model for
simulating the influence of the stochastic fluctuations on the
periodic vortex-shedding motion. So far, successsful applications
of a turbulence model to vortex-shedding flow have not been
reported. It should be mentioned here that steady calculations for
the time-mean field using standard turbulence models were not
successful (e.g. Majumdar and Rodi, 1985) since the strong
momentum exchange by the periodic vortex motion is not
accounted for in this approach,

The aim of the research reported here was to test various
established turbulence models in calculations of high-Reynolds-
number vortex-shedding flows. One candidate was the k-€
turbulence model as this is presently the most widely used model
in practice. The preliminary study of Franke et al, (1989)
evaluating the detailed experiments of Cantwell and Coles (1983)
has shown already that this eddy-viscosity model is unlikely to

yield satisfactory results since it does not take proper account of
history and transport effects which are of eminent importance in
unsteady vortex-shedding flows. A Reynolds-stress-equation
model was therefore considered necessary to account for the
transport and history effects, and hence the model of this type due
to Launder, Reece and Rodi (1975) was also tested. Two
approaches were used for the treatment of near-wall regions,
namely the wall-function approach and the two-layer approach in
which the viscosity-affected near-wall region is resolved with a
simpler one-equation model. The test calculations were carried
out for two-dimensional vortex-shedding flow past a square
cylinder. For this, detailed measurements have recently becoms
available for a Reynolds number of Re = 22.000 (Lyn, 1990).

2. CALCULATION PROCEDURE
2.1 Mean-Flow Equations

In flows with periodic unsteadiness, an instantaneous quantity
can be separated into (see Fig. 1)

f=T+ T+ f Y]
[ S
<f>

where T is the time-mean value, <f> the ensemble-average
value, T the periodic fluctuat’m and f' the stochastic turbulent
fluctuation. In the calculations presented here, equations
governing the temporal and spatial variation of the ensemble-
averaged velocity components and pressure representing the mean
flow are solved. These are the ensemble-averaged continuity and
momentum equations, which in tensor notation read as follows:
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Fig. 1: Definition of mean and fluctuating values in
periodic unsteady motion
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In the present 2D calculations, only the velocity components <u>
and <v> are present and all quantiiies depend only on x and y
(see Fig. 2 for coordinate system). In the momentum equations,
the correlation <uj uj > between the fluctuating velocme§ appears
which represents the Reynold stresses and needs to be simulated
by a statistical turbulence model. Ir: laminar vortex-shedding flow
at low Reynolds numbers, this term is absent and the only
stresses acting are the viscous ones. In the present work, the
calculation procedure of Franke et al. (1990) for laminar flows
was extended by incorporating various turbulence models into the
numerical solution procedure.

2.2 Turbulence Models

Before the turbulence models used are introduced, the problem
areas associated wath the challenging vortex-shedding flow
considered are discussed briefly with respect to turbuience
modelling. Three sub-areas of the flow can be identified:

(i)  Stagnation Flow

In front of a bluff body, a stagnation flow exists which behaves
virtually like potential flow. Except very near the wall, stresses
(viscous and turbulent) have very little influence on the mean-
flow behaviour. However, any turbulence and associated stresses
generated in this region influenrce the flow behaviour
downstream, e.g. the separated shear layer on the upper and
lower surface of a square cylinder. If turbulent fluctuations are
present, there is no shear-stress production on the stagnation line
but only normal-stress production which govems the turbulence
level in this region. The normal-stress production depends on the
separation between the normal stresses < u 2> and < v 2> which
is grossly overpredicted by an isotropic eddy-viscosity model and
requires for a realistic simulation a Reynolds-stress-equation
model (Taulbee and Tran, 1988).

(i) Attached and Detached Shear Layers on Side Walls

In the vicinity of the side walls of a square cyhinder, a complex
flow field develops with partly attached and partly detached shear
layers, possible reattachment on the side wall, as well as laminar-
turbulent transition. Here, inertial forces, viscous and turbulent
stresses interplay, and the region is of considerable importance
for the development of the vortex-shedding flow as here the
origin of the vortex instability is located. The details of the flow
mechanisms in this region are not well understood, and the
phenomena are difficult to describe by a turbulence model.
Because of the influence of viscous forces, wall functions are
unlikely to be very suitable.

(iii) Wake Region

In the wake past the cylinder, convection and turbulent stresses
dominate and the viscous forces are negligible. The vortices
generated in the region discussed under (ii) are convected
downstream forming a vortex street. The periodic vortex motion
is damped by turbulent stresses. The modelling of turbulence in
this region mainly affects the vortex frequency but not so much
the amplitude of the forces acting on the body. History and
transport effects are particularly important in this region so that an
eddy-viscosity model is unlikely to do justice to this region (see
Franke et al., 1989).

Two different models for simulating the turbulent stresses in the
bulk of the flow away from walls were tested and are briefly
introduced in the following. The two approaches used for treating
the near-wall region are described thereafter. The actual
turbulence-model equations are not given since only models have
been used which are fairly standard by now and have been
described elsewhere (e.g. Rodi, 1980). For all equations, the
ensemble-average form has been employed.

k-& model, The standard form of the k-ge model was applied to
many steady flows and had some success also for calculating
separated flows, even though the accuracy of the predictions was
not as high as for shear-layer flows. Here, the standard k-e modetl
is simply adopted for ensemble-averaged quantities. The
Reynolds stresses are calculated fiom the eddy-viscosity relation

o r e d<u> d<u;> 2
- < Uy >=< ¥ > (_?E,'_ --5;:—) -5 <k> 8 @

The eddy viscosity <v¢> is related to the kinetic energy <k> and
its dissipation rate <e>and the spatial and temporal distribution of
these quantities is determined from mode! transport equations.The
standard values were adopted for the empirical constants (see
Rodi, 1980).

Reynolds-Stress Equation (RSE) Model, In order to account
better for the important transport and history effects in vortex-
shedding flows, a second-order closure model was tested which
does not employ the eddy-viscosity hypothesis but determines the
individual turbulent stresses <ujuj> from transport equations. The
standard mode! of Launder, Reece and Rodi (1975) was adopted,
with wall corrections to the pressure-strain terms due to Gibson
and Launder (1978).The wall corrections effect damping of the
normal fluctuations near the wall and enhance the fluctuations
parallel to the wall. Again, standard values were taken for the
empirical constants (see Franke, 1991).

Near-Wall Treatment, For both turbulence models described

above, two approaches were tested for handling the near-wall
region. Wall functions are s'ill used in most practical calculations
and were therefore tested also here. In this approach, the viscous
sublayer is not resolved but the first grid point in a numerical
calculation is located outside this layer. Based on the assumption
of the logarithmic velocity distribution and of local equilibrium of
turbulence (production = dissipation) the flow quantities at this
grid point with wall distance y. are related to the friction velocity
Us = (twa/p)/2 by

= % intyt - u - uj
ue = —In(y" E) k. = “= 6]

Here, y* = Ugy/v is a dimensionless wall distance. In connection
with the RSE model, the shear stress at point c is set equal to
Uy2, and invoking local equilibrium conditions on the stress
equations yields the normal stresses at the first grid point.
The assumptions of a logarithmic velocity distribution and of
local equilibrium of turbulence are violated in separated flows
(see e.g. Rodi, 1991), especially near separation and reattachment
regions. One way around this problem would be to use low-
Reynolds-number versions of the models employed away from
the wall. For the k- model, a variety of such versions is
available, but they have vintually all been tested only for attached
boundary layers. For RSE models, low-Re versions are still
under development and not yet ready for application to a complex
flow. In both cases, such model versions require very fine
numerical resolution near the wall which has an adverse effect on
the computational effort required. For these reasons, a two-layer
approach was adopted here in which the viscosity-affected near-
wall region is resolved by a simpler one-equation model, which
does not solve a dissipation-rate equation but uses a prescribed
length-scale distribution and hence requires less numerical
resolution near the wall. The one-equation mode! is then matched
to the model used away from the wall. In calculations with both
the k-€ model and the RSE model away from the wall, the one-
equation model due to Norris-Reynolds (1975) was adopted near
the wall. The k-g-based two-layer model was already tested quite
extensively for steady flows, including separated flows (see
Rodi, 1991). The Norris-Reynolds model employs the eddy-
viscosity hypothesis and calculates the eddy viscosity from:
<VR>= fueV<ESL,  fu=1-c085wN) (6)
where fy; is a damping function similar to the van Driest function
accounting for the reduction of turbulent momentum exchange
very near the wall. The kinetic energy <k> is obtained from the
same <k>-equation as used in the k-€ model, while the length
scale L is agsumed to vary linearly with distance from the wall as
L = xyw/cy3/4 in the very thin near-wall layer where the model is
applied (x = 0.4187, cu = 0.09). The dissipation rate <e>
appearing as source term 1n the <k>-equation is net obtained from
an equation but calculated from the following algebraic relation:
< k>3 283y

T [ arv<k >L] @
When used in combination with the RSE model, only the shear
stress in the viscous sublayer is calculated with the aid of an eddy
viscosity relation according to (6). The normal stresses appearing
in the momentum equations are determined by assuming
<uju;j>/<k> = constant across the viscous sublayer. The ratio
taken is the one resulting from the RSE mode! at the matchirg

<eE>=
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point between this model and the one-equation model, while <k>
is taken from the k-equation. This approach is certainly very
crude and does not account for the damping of the normal
fluctuations very near the wall, but in the thin region where the
one-equation model is employed the flow has boundary-layer
character and the normal stresses are small compared with the
shear stress so that they do not need to be determined very
accurately.

The matching between the one-equation model and the model
used further away from the wall should be effected near the edge
of the viscous sublayer where viscosity effects have become
small. This is the case when the damping function at fy, in (6) has
a value near unity, and in the calculations presented the matching
was done where fyy = 0.95. For fully turbulent boundary layers
this corresponds to y* = 83. For good near-wall resolution, the
first grid point should be located at y* =~ 1. When the viscous
sublayer is resolved with the one-equation model, the no-slip
conditions are used as boundary conditions, i.e. both velocity
components are zero and also the turbulent kinetic energy <k>.

2.3 Numerical Solution Procedure

The differential equations governing the mean-flow and the
turbulence field were solved numerically with an extended
version of the program TEACH developed by Gosman and Pun
(1973). This employs a finite-volume method for solving the
equations in primitive variables on a two-dimensional staggered
grid. The coupling between continuity and momentum equations
vsas achieved with the SIMPLEC predictor-corrector algorithm of
van Doormal and Raithby (1984), which is an improved version
of the SIMPLE algorithm incorporated in the original TEACH
program. The central/upwind hybrid spatial discretization scheme
in the original TEACH program was replaced by the QUICK
scheme (Quadratic Upwind Interpolation for Convective
Kinematics) proposed by Leonard (1579). This scheme combines
the high accuracy of a third-order scheme with the stabilising
effect of uwpind weighting. A disadvantage of the scheme is its
unboundedness, which may cause over- and undershoots. It
should be mentioned that central/upwind hybrid differencing
introduced too much damping so that no unsteady vortex
shedding resulted. For time discretization, the fully implicit first-
order Euler scheme was chosen. It provides high stability but
requres small time steps in order to obtain accurate solutions
(more than 100 time steps per period were used). The resulting
system of linear difference equations was solved by the strongly
mmplicit method of Stone (1968). A more detailed description of
the numerical method is given in Franke (1991). The
computational domain in which the equations were solved and the
outer boundary conditions are shown in Fig. 2. In connection
with wall functions, a 70 x 64 grid was used with Ay¢/D =
0.022. For calculations with the two-layer approach, in which the
viscosity-affected sublayers are resolved, a 186 x 156 grid was
used with the first pomnt at a distance from the wall of Ay/D =
0.00125. On an IBM 3090, the calculation time to cover one
shedding period was typically 1/2 hour for the RSE model with
wall functions and 5 hours for the two-layer RSE-model.

3. CALCULATION RESULTS AND COMPARISON
WITH EXPERIMENTS

3.1 Expenmental Data

The availability of experimental data is crucial for the testing of
turbulence models. In the case of unsteady vortex-shedding
flows, a proper testing of the models can only be done when
resnlts of time-resolved measurements are available which give
information on the temporal variation of ensemble-averaged
quantities and separate the fluctuations into periodic and turbulent
ones. Such detailed data on flows past bluff bodies are rare, but
recently Lyn (1990) has completed time-resolved two-channel
LDA measurements in the wake past a square cylinder at Re =
22.000. In these experiments, the shedding period was divided
into 20 phase angles, for which the velocity-component and
«.eynolds-stress distributions were reported as ensemble-
averaged values in a plane perpendicular to the cylinder. The
turbulence level in the oncoming flow was 2%. The only other
fairly detailed measurements of the flow past a square cylinder
known to the authors are those of Durao et 4l. (1988) for Re =:
14.000. However, these authors obtained only time-averaged
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Fig. 2: Calculation domain and boundary conditions

data and did not separate the fluctuations into periodic and
turbulent components. The flow situation investigated by Lyn
(1990) was therefore taken as test case.

32 IntegralP { Time-Mean Diswibuti

The calculations with the k-€ model using wall functions yielded a
steady solution and ro vortex shedding. Apparently this
combination of model and near-wall treatment introduces too
strong damping so that a periodic vortex-shedding motion cannot
persist. Periodic vortex shedding was obtained with the other
three model variants, and a sequence of streamlines covering
approximately one period is shown in Fig. 5 below. Values of
various integral parameters predicted with the trbulence-model
variants tested are compared in Table 1 with experimental values.
The parameters considered are the dimensionless shedding
frequency (Strouhal number St = fD/Up), the time-averaged drag
coefficient cp and the amplitudes of the oscillations in drag
coefficient cp and lift coefficient cr, The k-€ model yields too low
shedding frequency and drag coefficient, the latter however being
somewhat higher than that obtained in the stationary solution with
wall functions. The drag coefficient does not oscillate, but there is
a small oscillation in the lift coefficient. Results obtained with a
modified two-layer k-€ model are aiso included in Table 1. In this
taodel, the unrealistic normal-stress productior. of k in the
siagnation region due to the use of an isotropic eddy-viscosity
model, which leads to excessive k-levels (see Fig. 5 below) is
suppressed in front of the body (shaded area in Fig. 2). This
measure reduces significantly the k-level in the front part and
influences mainly the vortex formation regions near the side walls
of the cylinder. The prediction of the integral parameters is
improved somewhat by this measure. Further improvement is
achieved by use of the RSE models. In combination with wall
functions, the predicted Strouhal number and drag coefficient are
now in good agreement with the measured ones. When the two-
layer variant is used, these quantities are predicted too high; by
switching from wall functions to a two-layer approach, the
shedding frequency increases while the amplitude of the
oscillating forces acting on the body is reduced. This detail of the
calculation is not well understood at the present time. Consistent
with the increase in cp when moving from the standard k-€ model
to the two-layer RSE model is a reduction of the base pressure.
The distribution of the time-mean pressure along the cylinder

Table 1: Integral Parameters

Turbulence models Experiments
. two mod. | RSE | two-
k-e with | layer | two- | with | layer
wall f. k- layer { wall | RSE
k-e | funct,
St statonary ;.124 .129 |.136 .159 Lyn .135
Durao .139

¢p | 155 179 | 1.89 ([2.15 {243 |2.05-2.23

p| . 0.0 | 00 | .383 | .079 .
Ly - 323 | 883 | 211 184 .
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walls is compared in Franke (1991) wit. various experiments
carried out at different Reynolds numbers and free-stream
turbulence levels. The experimental results themselves differ by
about 15 to 20%. The base pressure predicted by the RSE model
with wall functions falls between the measurement results, while
the k-€ model predictions yield too high and the predictions with
the two-layer RSE model too low base pressures.

Fig. 3 displays the distribution of the time-mean velocity u along
the centre-line and gives information on the length of the time-
averaged separation zone behind the cylinder. Experimental data
from Lyn’s (1990) and Durao et al.’s (1988) experimental study
are included. The data agree fairly well in the near-cylinder
region, but the centreline velocity measured by Lyn approaches
the free-stream velocity much slower than that measured by
Durao et al. The reasons for this difference and for the very slow
increase of the centreline velocity in Lyn’s experiments are not
clear. While, as expected, the velocity distribution in front of the
cylinder is influenced very little by the turbulence model used,
there are fairly large differences in the wake region, and in
particular regarding the length of the separation zone. The k-£
model variants overpredict the length of this zone considerably,
indicating that there is not enough momentum exchange
introduced by these models. Since in vortex-shedding flows the
momentum exchange is mainly due to the periodic vortex-
shedding motion (see e.g. Cantwell and Coles 1983, Franke
1991), this also means that the periodic fluctuations are
underpredicted significantly, as will be confirmed shortly. The
modified k-€ model predicts a somewhat shorter separation zone,
pointing to a more realistic simulation of the periodic vortex-
shedding motion. Both RSE model variants predict on the other
hand too short separation bubbles, and there is little difference
between the results obtained with the two versions near the
cylinder; there are larger differences further downstream but these
should not be taken too seriously since here there may be an
influence of the different numerical grids used, which are quite
coarse in this downstream region.

The distribution of the total (periodic plus turbulent) fluctuating
kinetic energy along the centreline shown in Fig. 4 gives a clue to
the results discussed so far and in particular to the differences
between the various turbulence models. The two-layer k-€ model
can be seen to underpredict severely the fluctuation level behind
the cylinder, while the RSE models give approximately the
correct level and distribution of the total fluctuations. The
differences between the RSE calculations using wall functions
and the two-layer approach are of the same order as the
differences between the experimental values of Lyn (1990) and
Durao et al. (1988), but the two-layer version yields a higher
fluctuation level, which is consistent with the higher Strouhal
number and drag coefficient predicted. The modified k-€ model,
in which the k-production in front of the body is suppressed,
yields a somewhat improved fluctuation level which, however, is
still far below the measured one. This shows that the problems
with the k-¢ model originate only to a small extent from the
excessive k-production by this model in the stagnation region.
The effect of this excessive production can be seen best ir Fig. 5,
which displays the distribution of the time-mean turbulent kinetic
energy K along the centreline. Fairly large k-levels are produced
right in front of the cylinder which are unrealistic. When the RSE
models are used, much lower k-levels result in the stagnation
region. Behind the cylinder, all models can be seen to
underpredict considerably the level of turbulence energy on the
centreline and particularly so in and near the separation region.
Since the RSE models predict the correct level of total fluctuation
energ v, this means that they overpredict the periodic fluctuations.
The k-€ models yield higher turbulent fluctuation levels in the
wake than the RSE models and this may cause a damping of the
periodic fluctuating motion and in turn the obierved
underprediction of this motion. The use of the two-layer aj proach
in connection with the RSE model increases the turbulent
fluctuations in the se yaration region. This may cause the reduced
amplitudes in the dri.s and lift forces on the cylinder, but
apparently on the whole the periodic fluctuations are increased
rather than reduced as can be seen from Fig. 4 and can also be
inferred from the increased Strouhal number and mean drag
coefficient.

3.3 Phase-Dependent Results

Since the Reynolds-stress models gave much more realistic
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fluctuation levels than the k-€ model, phase-dependent results are
only presented for the calculations with the RSE models. Fig. 6
shows the streamlines predicted with the RSE model using wall
functions at three phases; at two of the phases experimentally
determined streamlines are available and are also given for
comparison. The streamlines predicted with the two-layer RSE
model are not significantly different. The alternating vortex
shedding can be scen clearly, and there is reasonable agreement
about the streamline development with the experiments.
However, certain differences can be noted, At some phas»s, the
predictions do not show a negative <u>-velocity on the lceward
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Fig. 6: Streamlines at 3 phases
(Phase 1= 1/20T,
Phase 9= 9/20T,
Phase 17=17/20T)
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Fig. 7: Profilcs of <u> at x-location of rear
cylinder wall for 2 phases

side of the cylinder while the experiments indicate that the
velocity is negative at all times (for further evidence see Fianke,
1991). Also, the model predicts temporary reattachment of the
separated flow on the side walls near the rear corner (e.g. phase
1, topside) which was not found in the experiments. This can be
seen more clearly in Fig. 7 where the <u>-velocity distribution at
the x-position of the rear cylinder wall is compared with
measurements. Here, in addition to Lyn’s (1990) two-channel

measurements also Lyn’s (1989) one-channel measurements
extending closer to the wall are included. At the two phases
considered (1 and 9) the calculations do not show negative
velocities on one of the side walls while in the experiments the
velocity very near the wall is always negative. Considering the
results at all phases (which could not be included here) the two-
layer RSE model gives slightly better agreement with the
measurements than the model using wall functions. However, the
discrepancies point to a weakness of the model in underpredicting
the size of the separation zone near the side walls. Fig. 8 presents
the variation of the ensemble-averaged lateral velocity <v> along
the centreline for two phases. The agreement with the
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Fig. 8: Lateral velocity <v> along centre line at 2 phases

measurements is fairly good, both with respect to the maximum
values and to the zero crossings, the latter being a measure of the
size of the shed vortices. There is no significant difference here
between the model using wall functions and the two-layer
approach. Similar distributions for the velocity component <u> as
given in Franke (1991) show inferior agreement with
experiments, firstly because in the downstream region the time-
mean u-velocity is overpredicted, as can be seen from Fig. 3, but
also because near the rear cylinder wall the velocity is not always
negative as it was found in the experiments.

Finally, Fig. 9 compares calculated and measured <k>-contours
at one phase. The differences between calculations obtained with
the two RSE variants are not very significant compared with the
differences to the experiments. Of course, the asymmetry in the
contour lines is basically the same in the calculations and
experiments, as must be expected from the similarity of the
streamlines, but the maxima of <k> in the experimental data are
located much closer to the centreline than in the calculations, This
points to & weakness of the present calculation model which
appears to predict the centres of the vortices considerably further
from the centreline than the sxperiments indicate. This is
supported by a comparison of the RMS values of the periodic
fluctuations & on the centreline, which are virtually zero in the
experiment and take on a sizeable value in the predictions
(Franke, 1991).
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experiments (Lyn 1990)

Fig. 9: <k> contours at phase 1

4. CONCLUSIONS

Time-dependent calculations of vortex-shedding flow past a
square cylinder were carried out with various turbulence models
and near-wall treatments. The k-€ eddy-viscosity model combined
with wall functions introduces too much damping so that no
vortex shedding is predicted. With the two-layer approach, the
model does predict vortex shedding but the periodic motion is
considerably too small so that there is too little momentum
transport resulting in a too long time-mean separation zone and
too low values of the Strouhal number and drag coefficient. The
RSE models predict the correct level of total fluctuations, but
overpredict the periodic component while they considerably
undepredict the level of turbulence fiuctuations in the wake.
Concerning the Strouhal number and mean drag coefficient, the
RSE model with wall functions yields the best agreement with the
experiments while the two-layer RSE model produces too high
values. Concerning other flow features there is not too much
difference in the calculations obtained with the two model
variants. Both versions yield a reattachment on the side walls and
positive u-velocity near the rear wall at certain times during one
period which was not observed in the experiments. These
predicted features are probably due to an overprediction of the
periodic fluctuations. Also, the vortex centres are calculated too
far from the centre line of the cylinder. A refinement of the RSE
model making it more responsive to unsteady effects may
improve the calculations. However, the limits of conventional
turbulence models are probably reached in this flow with large-
scale vortex structurc and a better reproduction of the details
probably calls for a large-eddy simulation.
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ABSTRACT

Numerical solutions of a separated turbulent
boundary layer, obtained wusing standard k-¢ and
differential stress models, are presented. To achieve
satisfactory separation the dissipation equation in both
models had to be modified in the upstream part of the
boundary layer; without this modification both modecls
failed to predict separation. Despite the final solutions
showing reasonable agreement with experiment in terms
of skin friction and boundary layer growth rates, they
are far from adecquate in terms of the behaviour of
Reynolds stresses and turbulence kinetic energy. Tas is
particularly true around separation for both turbulence
models but also, in the case of the differential stress
model, in the whole of the separated rcgion.

It is argued that the usual assumptions ecmbodied by
such models do not really reflect the nature of the
turbulence in strongly adverse pressure gradient andsor
scparated flow regions.

1. INTRODUCTION

At the 1980/81 Stanford Conference on Complex
Turbulent Flows one of the test cases considered was the
separated turbulent boundary layer of Simpson et al
(1981). The flow was computed using a variety of
turbulence modcls, the most complex of which was a five-
cquation differential model; the rest were either variants
of the k-¢ model or one-cquation eddy-viscosity models.
All were successful in predicting separation, but with
hindsight this was probably because realistic length
scale behaviour at the wall was j .

In more recent computations, using the k-¢ model, De
Henau et al (1990) found that the boundary layer could
not be made to separate with the standard form of the
model. However, even in the simpler case of an
cquilibrium adverse pressure gradient boundary layer,
the model's predictions have been found to be poor (Rodi
and Scheuerer, 1986), with the shear stress and skin
friction values being overpredicted. Rodi and Scheuerer
attribute  this problem to the model's overprediction of
the turbulent length scale in the vicinity of the wall, and
argue that the production term in the dissipation
cquation should be enhanced so as to increase the
dissipation and so reduce the length scale and hence the
wall shear stress. By using a modification by Hanjalic and
Launder (1980) which has this effect, they obtained
accurate predictions of equilibrium adverse pressure
gradient boundary layers. In the more complex case of a
scparated turbulent boundary layer the tendency to
overpredict the shear stresses keeps the boundary layer
attached when mcasurements indicate that it should
separate, as was shown to be the case by De Henau et al.

In this paper the conclusion of De Henau et al is
confirmed and, more importantly, it is shown that a
similar conclusion holds in the case of the more
sophisticated differential Reynolds stress turbulence
model.  Separation cannot be achieved using either model
in its standard form, but satisfactory separation gap be
achieved by modifying the dissipation ecquation in the
upstream part of the boundary layer, although this still

leaves serious inaccuracies jn the mean flow and
turbulence  structure in the scparated region,
particularly for the differential stress model.

2. TURBULENCE MODELS

The turbulence stresses were modelled by the
standard k-e model and by a differential stress model
similar to that of Launder c¢t al (1975), but in both cases
the ecquation for dissipation of turbulence energy was
modified in the attached part of the boundary layer
upstream of the separation point.

The dissipation rate of turbulence energy is obtained
from a transport ecquation of the form

De e g2
BT=DE+C:1'k-Pk_Cc2—k— (n

where D, represents the diffusion of ¢ and Py represents

the generation of turbulence kinetic energy. In the k-¢
model Dg is given by

2 v, e
D‘—axi ((V + cs) axi) (2)

where v is the turbulent viscosity, and in the
differential stress model (DSM) it is given by

9 e k08
DE=axj((v6ij * C W D) axi) 3)

For two-dimensional thin shear flows, the generation
term Py is given by

R=-@-DE-w @

¥

The modification to (1), proposed by Hanjalic and
Launder (1980), essentially consists of enhancing the
irrotational part of the mean strain in (4), as follows

Ce3 —, U au
= = R Bilew, A | PR 12
P = C. W2 -v) 5 - v )

where Cy3 > Cgy. Gy has a value of 1.44 and Hanjalic and
Launder give Cgq a value of 4.44,

The turbulence kinetic energy equation in the k-e
model is retained in its standard form, i.c.

Dk U _._au
L B "R T (6)

where Dy is the modelled diffusive transport term, but
the normal stresses in (5) and (6) are expressed in terms

of the turbulence kinetic energy as w2 - vZ) = 0.33k,
which is experimentally observed in many less complex
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flows. The preceding modifications  were applicd 1n the
attachcd part of the boundary layer up to the computed
scparation point.

In the differcntial stress model the Reynolds stresses
are obtained from individual modclled transport
cquations which, for reasons of space, are not repeatcd
here. The closurc approximations are those described by
Launder et al (1975) ('Model 2' in their paper), with the
values for the various constants given in Table 1.

Cet Ce2 Ce Cs o]} Y
1.44 1.92 0.16 0.22 1.8 0.6

Table 1. Values of constants in turbulence models.
Nomenclature as °  Launder ¢t al (1975).

3. COMPUTATIONAL DETAILS
3.1 Solution procedury

The cquations described in the previous section,
together with cquations for mass and momentum
conservation, werec solved using the Harwell-FLOW3D
solution procedurc (Burns & Wilkes, 1987). This is a
finite-volume procedure based on a non-orthogonal
boundary-fitted coordinate system. The mean velocity
components, in Cartcsian coordinates, and pressure arc
stored at the centroids of control volumes based on a
boundary-fitted coordinatc system, and the equations are
transformed into curvilincar coordinates and integrated
over a simple rectangular grid The pressure 1s obtained
using the SIMPLE algorithm, or more modern vanants
(SIMPLEC, PISO), and the interpolation method of Rhic &
Chow (1983) is used to avoid the problem of chequerboard
oscillations in the pressure field.

The convection terms in  the equations were
approximiated by higher-order differencing schemes. In
the k-¢ solutions the well known QUICK scheme of
Leonard (1979) was used on the momentum cquations and
the bounded higher-order scheme of Gaskell and Lau
(1988) was uscd on the turbulence equations. In the DSM
solutions sccond-order upwind differencing (e.g. Hodge
et al, 1979) was used on all equations.

3.2 Geometry und solution domain

The gecometry of Simpson et al (1981) and the solution
domain arc shown in figure 1. The geometry consists of a
channel with a curved upper wall connected to a low
speed wind tunncl; the curvature of the upper wall
creates an adverse pressure gradient which causes the
turbulent boundary layer on the lower wall to separate,
Scparation on the upper wall is prevented by a boundary
layer control system which extracts the boundary layer
and introduces two-dimensional high-speed wall jets at
locations along the upper wall.

Mecasurements of mean velocity components and
Reynolds stresses in the separation region and in the
attached boundary layer upstrecam arc presented in
Simpson et al (1981) and in more detail in Simpson ct al
(1980) and Shiloh et al (1980). Accurate mcasurements of
the scparation rcgion were obtained by using a
directionally sensitive laser anemometry system.

Channel

Howcver, these extend only to a point part of the way
along thc scparation bubble. Beyond this point the flow
was increasingly three-dimensional.

3.3 Boundary conditions

Boundary conditions are requircd for the axial and
vertical meaa  velocity components U and V, the

dissipation rate €, the individual Reynolds stresses W, vz,

w2,7, (in DSM calculations) and the turbulence kinetic
energy k (in k-¢ calculations).

The inlet to the solution domain was located in the
parallel section of the channel at x = 1.63m. At this
location the boundary layer has recached a fully-
developed statc and has a clearly defined logarithmic

region. Measured profiles of U, w2, vZ, W2 and W, at the
inlet location were available from Simpson's reporis; the
freestream  velocity at this location was 21.8m/s. The
turbulence kinetic cnergy k was computed from the
individual normal stresses and the vertical mean velocity
V was assumed to be zero. To obtain the inlet dissipation
ratc ¢ in the boundary layer it was assumed that the
turbulence length scale L was equal to min(xy, 0.0855)
where y is distance from the wall and & is the boundary
layer thickness. The dissipation rate was then obtained
from

3
e = QI B

The constants x and Cy have values of 0.41 and 0.09
respectively.

At the outlet boundary (well beyond reattachment)
the axial derivatives of all quantities were assumed to be
zero, which is a much more satisfactory procedure than
applying boundary conditions within the separated
rcgion, as was done in some of the computations for the
Stanford Conference.

One option for the outer boundary condition would be
to usc the wind tunnel upper wall and extract mass
through it, as was done in the experiments. In the
present work, the outer boundary of the solution domain
was defined using a measured inviscid flow streamline, as
suggested by the Stanford Conference organisers. This
extends only as far as the last measurement station, so it
was continued by a smooth curve beyond the channel
outlet to x = 9m. Provided this extension is chosen
sensibly it has virtually no effect on the details of the
solution where the mecasurements are available. For the
bounding streamline, a streamline coordinate system
(s,n,b) may be defined where s 1s the coordinate
tangential to the streamline, n is normal to s and lies in
the x-y planec and b is normal to s and n. Boundary
conditions for the mean velocity components and
Reynolds stresses in Cartesian coordinates and for e were
derived by applying the symmetry conditions:

(Ug,uZ, w2, ul, e)
U, =50 = 5n =0 (8)

from which it follows that dk/on = 0.

At the wall standard logarithmic wall functions as
described by, for cxample, Launder and Spalding (1974)
were applied, although it is recognised that within the

Solution domain

] Mecasured 1
x=163m  separation point
x = 3.45m

T Final measurement

station x = 4.34n, x = 9.0m

Figure 1. Geometry and soiution domain.
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Channel

(b)

Solution domain

Measured separation
streamline

v
Solution domain
x mlet x = 1.63m
Stn~ 1
x(m): 222

Figure 2. (a) Computational grid - note that only half the number of axial grid lines
are shown. (b) Measurement stations.

separated region standard log-law bchaviour does not
occur.

3.4 Computational gnd

The computational grid 1s shown in figure 2a. The
dependent  variables were stored at the centroids of
control volumes formed by grnd lincs running vertically
from the wall to the inviscid flow streamline and
lengthwise from the iniet plane to the outlet planc. The
lengthwise grid lines were arranged so that their
rclative spacing was constant from inlet to outlet.

The vertical grid lines were arranged in four
scctions, cach containing either a uniform expansion or
uniform contraction in spacing. First there was a
uniform contraction in spacing from the inlet planc to
the measured scparation point at x = 3.45m. Then there
was a uniform expansion to thc midpoint of the computed
recirculation bubble at x = 4.425m, followed by a uniform
contractton to the location of the computed reattachment
point at x = 5.4m. Finaily there was a uniform expansion
to thc outlet plane at x = 9.0m. The grid spacing at the
scparation and rcattachment poinis was 0.04m. It was
found that using smaller spacings than this had no cffect
on the solutions.

The lengthwise grid lines were arranged so that their
spacing cxpanded uniformly away from the wall. At the
inlet plane the spacing at the wall was 0.002m. This
ensured that the ncar-wall centroid fell well within the
logarithmic region over a large section of the upstream
attached boundary layer.

The computations presented in  section 4  were
obtained on a grid containing 80 x 40 grid lines. The
vertical gnid lines were arranged so that the mesh
expansion ratio in each section of tne grid was the same;
this gave mesh expansion ratios of about 1.06. The mesh
expansion ratio in the vertical direction was 1.04.
Solutions were also obtained on a grid containing 120 x 60
gnd lines to check for grid-indcpendence and these were
found to be virtually identical to those on the 80 x 40 grid.

4. RESULTS OF COMPUTATIONS

In tlus section the k-¢ and DSM solutions are
compared with experimental measurcments. Computed
and measured profiles of mean velocity and turbulence
quantities arc presented for five axial stations, indicated
in figure 2b. Two of these are within the attached
boundary layer upstream of the measured scparation
region and three arc within the scparation region itself,

onc close to the scparation point - note the measured
separation streamlinc included in the figure.

4.1 k-e_ solutions

It was found that the boundary layer could not be
made to scparate with the standard k-g¢ model, in
agreement with the finding of De Henau et al (1990).
Satisfactory separation was achieved when the
modification to the dissipation equation (see Section 2) in
the attached parnt of the boundary layer was applied. The
location of the scparation point was dependent on the
value of Cg3 used. An increase in Cg3 caused a more rapid
reduction in the wall shear siress, so the boundary layer
scparated earlier. Table 2 presents the computed
scparation point for Cg3 values of 2.5, 4.44 and 5.5 - note

that the measured separation point was at about x = 3.45m,

Ces 2.50 4.44 5.50
Xsep (m) 4.03 3.54 3.39

Table 2.  Effect of Cg3 on the computed separation point
in the k-e solutions.

In figure 3 detailed comparisons of computed and
measured mean velocity and turbulence energy are
presented for the axial stations indicated in figure 2b. In
the separation region the level of agreement between
the computed and measured mean velocity profiles for
Ce3z = 2.5 is very poor because the separation point is too

far downstream. The level of agreement for Cg3 = 4.44 and

5.5 is much better because the separation point is
predicted more accurately, but there are still significant
differences in the profiles: the positive velocities in the
outer part of the boundary layer and the negative
velocities in the back-flow region are too small.

At station 2, in the attached boundary layer, the ncar-
wall velocities for all Cg3 values arc too high, indicating

that the wall shear stress is too high at this location. This
is confirmed in figure 4 which compares computed skin
friction coefficients for each C,3 value with

measurements, The skin friction values agree with
measured values around the separation point (for
Ce3=4.44 and 5.5) and in the initial zero pressure gradient
region, but are a little too high in the strong adverse

pressure gradient region upstream of the separation
point.
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Figure 3. U-velocity and turbulence energy profiles for k-e model; A, Cgq = 2.5;
0, 444; O, 5.5; A, measured. (a) U-velocity, (b) turbulence energy.

Figure 3b shows that the turbulence energy for
Cg3=4.44 and 5.5 is rcasonably well predicted in the

attached part of thce boundary layer and at stations 4 and
5 in the separation region, but is much too low around
the separation point. In fact the turbulence energy falls
sharply as thc scparation point is approached, before
rising in the separation region. This can be seen clearly
in figure 5 which shows profiles of computed turbuience
energy for y/8 = 0.3. Simpson's measuremcnts of normal
stresses  indicate that this computed sudden fall n
turbulence energy is erroncous. Thus although the
modification reduces the wall shear stress and causcs
scparation, it produces an unrealistic fall in turbulence
cnergy around the separation point. This does not scem to
have been notcd in the previous (limited) work using the
Hanjalic & Launder modification but is not really
surprising since the length scale reduction (leading to
the required lower wall shear stress) is obtained via an
effectively 1mposed increase in turbulence dissipation
ratc. This lcads naturally to reductions in cither the total
turbulence energy or, in the case of the differential
stress model, the individual Reynolds stresses.

Finally, figure 6 compares the computed and
measured growth in boundary laycr thickness. As Cg3 is

2.5
2
1.5
1
0.5
0
-0.5 ==
15 2 25 3 35 4 45 §
x(m)

G

Figurc 4. Skin friction coefficient for k-e mode!.
Legend as in figure 3.

increased the
more rapidly,

quite as rapid

o ‘*

thickness of the separation region grows
but even for Cgq = 5.5 the growth is not

as measured.

0.025

0.02

0.015

0.01

0.005

0
1.5 2 253 354 455
x(m)

Figure 5. Turbulence energy at y/8 = 0.3 for k-t model.

(mm)

Legend as in figure 3.
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Figure 6. Boundary layer thickness, 8g9, for k-e model.
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Figure 7. U-velocity, turbulence energy and shear stress profiles for DSM model; A, Cyq = 4.44;
0, 5.5; 0, 7.0; A, measured. (a) U-velocity, (b) turbulence energy, (c) shear stress.
42 DSM_solutions calculated for Cg3 = 7.0 at this station (x = 3.01m), but that

The boundary layer could not be made to separate
with the standard form of the differential stress model,
but, as in the k-e solutions, satisfactory scparation could
again be achieved by applying the modification to the
dissipation equation in the attached part of the boundary
.ayef. The location of the scparation point again
depended on the value of Cg3 used, but a higher value of
Ce3 was required to achieve the same separation point as

before.  Table 3 presents the location of the scparation
point for Cgq values of 4.44, 55 and 7.0. Previously, the

separation point for C.3 = 5.5 occurred upstrcam of the

the computed values are again too high over most of the
adverse pressure gradient region.
At station 3 scparation has occurred for Cgz = 7.0, in

agrecment with the measurcments, but not for Cgg = 4.44
and 5.5. The velocities for C,q = 7.0 are too small in the

outer part of the boundary layer and also in the small
back-flow region - note that overall continuity is
satisfied because the freestream velocity is higher than
measured, The profiles for Cg3 = 4.44 and 5.5 have small

measured separation point, but now it occurs 4
downstream. 3.5
3
Ca 4.44 5.50 7.00 2.5
Xgep (M) 3.85 3.68 3.49 ¢ 2
Table 3. Effect of Cg3 on the computed separation point 1.5
: . 1

in the DSM solutions. .

0.5 ;
0

Figure 7 presents computed and measured mcan 4.5 :

velocity, turbulence energy and shear stress profiles for
the axial stations in figure 2b. At station 2, in the
attached part of the boundary layer, the near-wall
velocity is accurately calculated for Cg3 = 7.0. Figure 8
compares the computed and measured skin friction
values and shows that the skin friction is accurately

1.5 2 25 3 35 4 45 5
x(m)

Figure 8. Skin friction coefficient for differential stress
model. Legend as in figure 7
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but unrcalistic pecaks at the acar-wall centroid, and
further downstrcam ncgative velocities first appear at a
location above the rezar-wall centroid. Increasing <3
climinates this behaviour and it does not occur for
C¢3=7.0. The differences between the computed and
measured profiles for all Cg.3 values increase with
downstream distance and at stations 4 and 5 the positive
velocities in the outer part of the boundary layer and the
negative velocities in the back-flow region are much too
small.

1.5 2 253 354 45 5
x(m)

Figure 9. Turbuience cnergy at y/8 = 0.3 for differcntial
stress model. Legend as in figure 7.

In figure 7 it can be seen tha: the turbulence cnergy
and shear stress n the separation region are much too
small for all Cg3 values. Figure 9 shows computed valucs

of turbulence cnergy for y/6 = 0.3, and it can be scen that
the turbuicnce falls sharply as the separation point is
approached, as in the k-¢ solutions,, but does not recover
to the measurcd lcvels as before

Despite the differences in the computed and measured
mcan velocity and ..rbulence quantities in  the
separation region, the growth of the boundary layer is
accurately predicted, as may be seen from figure 10,
which compares the computed growth in boundary layer
thickness with mcasurement. This should probably not
be taken as cvidence of some 'low-order' vahdity of the
turbulence model, since the location of the outer
boundary streamline is being impased. The predictions
of the turbulence structure within the scparated region
do not agree with the implications of ecither Simpson's
measurements or the more recent detailed studies of
scparated regions undertaken in our own laboratory (e.g.
Dianat & Castro, 1991). Even if the turbulence predictions
around separation wer¢ more 4ccurate, we would not
expect current turblence ..odels to handle the separated
flow itself very well (Castro, 1991).

400
350
300

250
%9 100
(mm)

150

100
YR ——
o e

1.5 2 25 3 35 4 45 5
x(m)

Figure 10. Boundary layer thicknes:, 899, for diffcrential
stress model. Legend as in figure 7.

5. CONCLUSIONS

The major conclusion is that turbulent boundary
layer separation cannot be adequately predicted by the
standard k-¢ model or the differential stress model.
Hanjalic & Launder's (1980) modification to the
dissipation equation produced separation but left serious
errors in the separation region, particularly when
applicd to the differential stress mode!. These were at
least partly due to the modification itself, and it seems
clear that the scparation process cannot be adequately
modelled by simple changes to the dissipation equation.
However, the poor quality of the DSM solutions suggests
that current modeiling assumptions do not really reflect
the nature of the flow both up to separation and in the
separation region itself.
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NON-ORTHOGONAL CALCULATION PROCEDURES
USING SECOND MOMENT CLOSURE

S. Sebag’, V. Maupu®, D. Laurence

E.D.F., D.E.R, LNH
6, quai Watier, BP.49, 78401 CHATOU Cedex, FRANCE

ABSTRACT:

Two different two-dimensional curvilinear finite-volume
(FV) codes with hoth k-¢ model and a Reynolds Stress
Transport Model (RSTM) [1,2]) have been achieved for
application 1o recirculating flows in non rectangular
geometries. Such a geometry is encountered in a flow
acrcss rod bundies in heat exchangers In which accurate
predictions of turbulence characteristics are required
prior to tentative modelling of heat transfer at the walls.
The paper focuses on the implementation of wali
boundary conditions within the Carteslan framework.
Numerical predictions of the tube bundle flow are
compared with experiment : The level of turbulent kinetic
energy, overestimated by the eddy viscosity model, is
better predicted by RSTM and Improved by slight
modifications which aim at overcoming some weaknesses
of the standard model in strongly anisotropic flows on
one hand, and 1n impinging regions on the other hand.

NOMENCLATURE

Reynolds Stress Transport Equations :

au, y = du Ui
-+ Uk—= = Pijj + @+ dij-¢
o K ) § i § i
where :
Pij = '(U]ng% + Wg%i’-)
- - pf2u +_39_f)
Py Plox; oxi
dij = -a—(um;Uk + S,ky-TE + Smg‘-—B - VQE'—U-‘—
OXk p P dXx
YD
Eif * 2V ——-—
" Ik OXx

Reynolds Stress Transport Model (RSTM)
* The pressure strain correlation ®jj assoclated with
the deviatoric part of ejj is the main contribution to the

model. Following Launder, Reece and Rodi [1], it Is
decomposed into three terms :

biy = d>”+(s”—§-esu)= dit + duy2 + dujw
areturn to isotropy (slow) term :

= -C:ElTTU - 2
iy, C1k(UI uj aksl])

* Part of the research work of these authors was
undertaken during their stay at the University of
Manchester Institute of Science and Technology.

an isotropization of production (rapid) term :

$ij.2 = -Ca (Pu - §P8|1)

and a wall echo term (Gibson Launder) [2] :

Gijw = C'vf(ml\ﬂm&] - -zammm - -gmmm) f(#rf{)
+@(¢km,zm"m5ll '-,‘?tbu.zmnj - -23¢”,zmn|) '(x—nlrﬁ)

+diffusive transport of Reynoids stresses and
dissipation rate two distinct models have been
employed, atensorial one, following Daly and Harlow [3],
hereafter referred to as DH-giffusion :

and an "eddy viscosity" one, referred to as EV-
diftusion :

dy = 2 11‘...3_3,7,)
Ixk | Ok axk

- 9 (v 9
c BXk(U: axue

+Equation of the dissipation rate ¢ :

T &
=+ U= = de+ CakP -
ot 3 "k Calt
notations :
aij turbulent stress anisotropy tensor-u—:—’l-fsu
A 2D Invariance coefficient = 1-§(A3-A3)
A2 second anisotropy tensor invariant = ajk ak;
A3 third anisotropy tensor invariant = ajk aij ayj

Cu =) (set 10 0.09 in the k- rodel)

dij diffusive transport of i)
E Ingarithmic law constant
k turbulent kinetic energy = .5+uju)

34
I characteristic turbulence length scale :_C_,.;_iki'z_

ni component of the unit vector normal to the wall
P generation rate of k = 5Py,

Py generation rate of Giu;

Re Reynolds Number =UgD/v

e
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Uo reference velocity
Ui mean velocity component
u; Cartesian fluctuating velocity component

u,v,w surface adapted fluctuating velocity component

Us friction velocity viau« =4 YCyu k

1Tl x
velocity viauy = —o——
Ug friction y Lk Ey)
Xy Cartesian direction coordinate
x,y,z wall surface adapted coordinate
y* non dimensional distance to the wall = yu./v
(Y] dissipation rate of uiu
€ dissipation rate of k = .5 * &
Oy pressure-strain correlation
v kinematic viscosity
2
vy eddy viscosity, c“ek
X Karman Constant = 0.41
Tw wall shear stress = -ua—L-J-L
Y fwat
constants :

€1 C2 Cq C2 Cs Cg Cgy Ceg2 ok O¢
1.80.6 0.5 0.3 0.22 0.18 1.44 1.92 1. 1.3

In anisotropic flows, Launder et al [4] suggest a
dependence of the ¢ equation constants in terms of the
anisotropy tensor invariants :

Cez = —192

Cey =1
el 1406 YAz A

INTRODUCTION:

To our knowledge, FV RSTM computations have yet
been limited to flows in non rectangular geometries with a
low degree of complexity, where only orthogonal grids
are required. On the other hand, in these distorted tlow
domains, where recirculation occurs, second moment
closure models markedly prove their superiority upon
eddy viscosity models in that they better take into
account the interaction between curvature related strain
and turbulence anisotropy whereas a k-e model strictly
aligns the principal axes of the two tensors.

!ﬁ;\ig
N L [F
A A

x°=1635mm_1

B TE——
45 mm

Figure 1 : flow domain within a tube bundle
(dashed lines : domain of computation)

A non orthogonal grid (NOG) is required tfor the
geometry of Fig. 1 which by symmetry and periodicity
represents the fully developed cross-flow within a tube
bundle (experiment of Simonin et al. [5)). This NOG
(Fig. 4) enables refinement of the mesh in the leeward
corner precisely where maximum difference between k-e
model and RSTM may be found. After presentation of the
two solutions procedures which have been implementod,
results obtained on this geometry will be discussed.

NUMERICAL SOLUTION PROCEDURES:

The numerical implementation has been carried out in
two different solution procedures, both using Cartesian
decomposition of vector and tensors.

The first numerical solution procedure (NSP1) is based
on a semi-staggered variable arrangement (Fig. 2) which
naturally (one order of derivation corresponds to one
grid-swapping) couples Reynolds stresses to the mean
tlow variables.

Ty

Figure 2 : Semi-staggered grid arrangement.

The second one (NSP2) uses a collocated
arrangement (Fig. 3) in which the coupling of various
variables Is re-established by interpolation practices
[6],[7] similar to those employed by Rhie and Chow {8] for
pressure and by Obi et al. for the Reynolds stresses on
rectangular grids {9].

—L N\~
U1-U—2 P
° vivj €
/\ —X

Figure 3 : Collocated grid arrangement.

The two procedures also differ from one another in
algorithmic details :

NSP1 is a time marching procedure solving the
unsteady equations by fractional steps [10]:

1) advection of variables by a Lagranglan method,

2) a diffusion and source term step solved in the
incremental form with a linear system coupling all
variables,

3) a pressure
conservation,

correction step ensuring mass

all linear systems are solved by athree level conjugate
residual algorithm with a diagonal preconditioning for
step 2.

NSP2 solves the steady equations in an iterative way
(under-relaxation). At any iteration, governing equations
are solved one by one. The Power Law Differencing
Scheme is used for transport terms and source terms are
selectively implicited {11]. Mean velocity and pressure
fields are coupled by a pressure correction -SIMPLEC-
{12] algorithm and tri-diagonal linear systems are solved
by afully vectorized Red-Black aigorithm.

The geometry, NOG and use of Cartesian coordinates
;:sq_me generalization of boundary conditions for the

BOUNDARY CONDITIONS :

No major difficulties lle in the implementation of
boundary conditions (for the flow domain shown in Fig. 1,
symmetry and anti-periodicity conditions are applied),
except for wall boundary conditions (WBC).

RSTM is rooted in a high Reynolds numbaer
assumption, and therefore it is not valid up to the wali. As
awBCin complex geometry, it is thus advisable, for sake
of simplicity, to use a wall function approach despite its
well known shortcomings :

1) lts strict domain of validity is the one dimensional
Couette tiow
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2) Existing wall functions all focus on a wall surface
adapted framework while equations need to remain
tractable when transferred back into the Cartesian
framework.

Relating to this, NSP1 and NSP2 have two separate
implementations presented here-below :

Concerning NSP1 [13], WBC on the total stresses are
interpreted as limiting values for the turbulent force
imposed on the mean flow: Let R be the Reynolds stress
tensor and (N, T) respectively the normal and tangent to
the wall, and dF the resulting force : dF = R N

4 assumptions need to be made to define the 4
stresses :

- the turbulent shear stress approaches the wall shear

stress towards the walli.e. dF.T = 1y/p {A1
.9k

-a Neuman condition is applied to k : Y =0 (A2}

-for 2D tlows, one can assume :%-:-z- =0 {A3)

- finally as a fourth frame independent condition we
write _8_(%%& =0 {A4)

(where “dF.N" is obviously nothing else but v2)

As a matter of fact, these BC are equivalent to:

W W g W
—aT-O.-a-E——O.-é-n—-—O.uV—tw/P

Returning to the Cartesian framework leads to a
system of four equations:

(u - u¥)mn + Wuz(nf - nd) = -wlp
nizlrf- + ng%"—:f + 2nnal$'nu2 =0
uf | _

m T o -0

g

o - °

This coupled system Is easily implemented in the semi-
staggered code since all stress are solved fully coupled
and implicitly.

tw is evaluated from two approximations of the friction
velocity, one, ue, resulting from the definition of Cyu:

u=vYG k
while the other one Is obtained from the logarithmic

law : _
|T| x

“EhEy

This leads to the following variegation :
Tw /p = - sign(U) u- uc

Besides the wall value of e is chosen as :

ud
e . ———
v x 0.2 Ay

ewait i8 ONnly used In the diffusion term and the fraction
of the space discretisation 0.2 Ay allows the gradient of
dissipation to be compatible with the local equilibrium at
the cell face.

it should be noted here that, by assuming the local
equlilibrium, one has entirely set the value of Cy. From
the modelied stress equations, using the standard values
of the RSTM constants, one finds :

Cu ~ 0.065

This is in agreement with the channel flow experiment
of El Tebany and Reynolids [14).and it is recalled at this
stage that the usual value of 0.09 had been set from a
free shear layer experiment [15].

An alternative used In NSP2 [16] is to solve an
Algebralc Stress Model in the near wall cells to ratrieve
more general Dirichlet conditions on the stresses In the
surface adapted frame and then simply recover the values
in the Cartesian coordinates. However, in this collocated
procedure, the wall function approach demands a
modification of the turbulent kinetic energy equation in
the near wall cell which satisties the local equilibrium. It is
obtained by forcing the tollowing equality :

-‘u_Vilinurwnll =~ Enear wall ~ yf—
oy Xy

and by assuming a zero gradient diffusive flux
at the wall fork.

Following Rodi [15], it the transport of Reynolds
stresses is assumed to be proportionaito the transpornt of

k with TiUj /k as ratio of proportionality :

(1-C2) (P..-§~P&n + Ojw
P+ (Ci-1)e

———u'ul‘ - 25 +
k near wall 3

In the surface adapted framework, a local
Couette flow approximation reads : _

2(Ci +2-2C2+ C2C) + ce
3 .

EI =

K | nearwa Cy

E! i §(C‘ +Cz-1- 2C2C2)
K | nearwar Ci + 2C;

(ry_ﬂ - B[1-Cos 15CC2| . ¢,
K7 1 near wat k Ci + 1.5C)
However, as far as the turbulent shear stress is

concerned, in order to keep benefit of the variegation
used in NSP1, the following expression is employed -

UV| nearwall = Tw/p = - sign(U) u- ue

RESULTS :

As detailed in Fig. 4, the ftlow-fleld can be
decomposed into 3 regions where the mean flow i3
undergoing compression, acceleration and sudden

expansion.
Compression

Figure 4 : Flow analysis

For the present report, most of the results are
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presented in the expansion zone of the periodic field at
location Xg (Fig. 1) and compared with the experiment of
Simonin and Barcouda. The Reynolds number based on
the diameter of the tubes is equal to 18 000.

Details of the predictions presented in folowing
figures are summarized in Table 1. Bold cells denote
underlying comparisons.

Figure 5 6 7 8
Numerical | NSP1, NSP1 NSP1 NSP1
Procedure] NSP2 NSP2(ke)

Turbulence; RSTM RSTM RSTM RSTM,

Model k-¢

Turbulent EV DH DH DH

diffusion DH

(Ce1,Ce2) |(1. 2 (A2 AN [(1. . 1A, A)) | (1.44,1.92), K1.,1(Az,A))

(1., 1(A2,A})
dij.w locaily =0, locally locally
cancelled Jstandard,ljcancelled jcancelled
ocally
cancelled

Differences occur between NSP1 and NSP2 with the
same eddy viscosity turbulent diffusion model (Fig. 5).
Even though treatment of convection terms and
pressure-continuity steps ditfer, they cannot be
responsible of such a divergence in the results since k-e
results with both numerical solution procedures are very
similar (Fig 8). Stress boundary conditions are enough
different to explain such discrepancies.

Besides, one should note the high sensitivity to the
turbulent diffusicn modelling which affects the tevel of
turbulence (Fig. 5b) as well as the mean momentum (Fig.
5a).

The presence of the wall reflection terms greatly
improves the description of the recirculation region (Fig.
6) with a raising of turbulent shear stress and kinetic
energy but the upstream flow of the expansion (y>8)
shows a non physical behaviour of ¢jj,w modelling. I one
considers a one cimensional approach in the vicinity of a
stagnation point (dU¢/9x4 < 0), it is noticeable that
d11,w+d22,w acts as a source tarm in the 2D turbulent
kinetic energy equation. This creates an artiticial spot of
turbulent kinetic energy which is carried down along the
tube sides and still visible at location Xg. As a matter of
fact the wall echo term modelling is designed to take into
account the attenuation of normal Reynolds stress near a
surface,only in a local Couette flow approximation. The
best compromise is thus obtained by accounting for the
only physical effect, i.e. the downstream tube effect, and
to cancel locally the etfect of the impinged surface upon
wall echo redistribution. The extent of the recirculation
region is nevertheless affected through the anti-
periodicity condition.

Fig. 7 shows that the classical e equation with constant
underpredicts turbuient fields. Velocity profile is also
badly captured with a too long recirculation zone. By
taking into account the anisotropy through these
coefficients, Launder et ali's proposal successfully
rectities mean and turbulent profiles.

Fig. 8 compares NSP1 and NSP2 k-¢ model
predictions with final RSTM results (obtained in NSP1
after modification of e equation and correction of wall
echo “tricky" effects). As noticed previously both
procedures predict similar k-¢ results but, unlike
experimental data, this model reverses the turbulence
maximum near the upstream wall. In a 1D approach of the
flow upstream a stagnation point (see above discussion),

eddy viscosity aifurnpllon leads to :
Py = 4 yr (.a_g_l_):

which unrealistically forces the positivity of the
production torm (Fig. 8d). The amount of artificial
turbulent energy is then convected from the
impingement region along the tube wall.

Whatever the model is, mean velocity profiles are not
tar from experiment (Fig. 8a). Besides rapid distorsion
coefticient o ( ratio of characteristic turbulent and mean
strain time scales) :

30 |, aUI
" SijSi) where S = Ho— + —
o=k/eYS S wl i) %{dx,+ dx;)

exceeds 3 In the high shear reglon which tends to
prove apredominancy of rapid termupon non linear term.

2,5

u1/Uo
&
A 1

oo+r——Trr—Tvrr—r T T T T T

0 2 4 6 8 10 12 14 16 18 20
(5.a) : longitudinal mean velocity component

0.5
0.4

0,31

0,2

12 ( <utut> + <u2u2> ) 7 U0"2

0.0'l"!'l‘l"'l'l'l'l'

0 2 4 6 8 10 12 14 16 18 20
(5.b) - 2D turbulent kinetic energy

<u1u2>AJ0**2

0,20 1
0 2 4 6 8 10 12 14 16 18 20

(5.c) : turbulent shear stress

YTy

%  Exp.data from Simonin and Barcouda
~ee  NSP1 + EV-diffusion
—— NSP1 + DH-diffusion
R NSP2 + EV-ditfusion

Figure 5 : Comparison of the two numerical solution
procedures (NSP1 and NSP2) : RSTM predictions at
location Xp ; influence of the turbulent diffusion term
modelling
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(6.a) : longitudinal mean velocity component
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0,41
0.3 1
0.2 1

12 (<ulul> + <u2u2> ) 7 U0*2

().O'I'l'l'l‘l'l'l'l'flﬁ

0 2 4 6 8 10 12 14 16 18 20

(6.b) : 2D turbulent kinetic energy

<uiu2>/U0**2
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0 2 4 6 8 10 12 14 16 18 20

(6.¢) : turbulent shear stress
¥ Exp. data from Simonin and Barcouda
~=—-no wall echo term

———wall echo term of downstream tube only
—roees wall echo term of both tubes

Figure 6 : RSTM predictions obtained with NSP1 at

location Xp : influence of the wall echo term bijw -
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(7.a) : longitudinai mean velocity component
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(7.b) : 2D turbulent kinetic energy
N
o
3
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(7.c) : turbulent shear stress
®  Exp. data from Simenin and Barcouda
- goquation with Cet = 1.44, Ce2 = 1.92
—— tequation with Ce1, Ce2 related to anisotropy invariants

Figure 7 : RSTM pradictions obtained with NSP1 at
location Xg : influence of the ¢ equation modelling
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(8.a) : longitudinal mean velocity component
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(8.b) : 2D turbuient kinetic energy
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<ulu2>/Uo**2

’O.ls'l'l'l'l'l"""l']'*

0 2 4 6 8 10 12 14 16 18 20
(8 ¢) : turbulent shear stress

Production of k

T 7T J
5 6 7 8 9 10 1112

(8.d) . production term Pk along the axis of symmetry
upstream the tube

%X  Exp data from Simonin and Barcouda
e ASTM with NSP1
———  k emodel with NSP1

. k £ model with NSP2

Figure 8 : comparnison ot k-¢ predictions obtained with
NSP1, NSP2 and RSTM predictions obtained with NSP1,

CONCLUSION

Predictions of afully developed flow across a tube
bundle have been obtained with a k-¢ model and a
Reynolds stress model, both implemented in two
different numerical solution procedures. Similar results
are obtained with NSP1 and NSP2 when the eddy
viscosity model is used whereas divergences in the wall
boundary condition treatment make the two RSTM results
tar from one another. The semi-staggered FV approach
(NSP1), avoiding interpolation stabilizing techniques,
leads to a robust procedure which is meant to overcome
deterioration of numerical stability by strong source terms
occurring in curvature, rotation or buoyancy dominated
flows {18] On the other hand, the collocated procedure
(NSP2) is more versatile in testing various turbulence
models and also more suitable for multigrid methods [19].

The flow is belisved to be dominated by rapid
distortion, and this was confirmed by the fact that both
RSTM and k-e model are giving velocity fields close to the
experimental data. On the other hand, turbulence
characteristics predicted by the RSTM are significantiy
better than those of the the k-¢ model, due to a better
description of the anisotropy. Accounting for the
anisotropy.in the ¢ cquation constanis improved again
the resuits, together with a local suppression of the wall
echo terms which seems unsuitable for an impinging flow.

In a same way, boundary conditions are shown to be of
significant importance in the level of turbulence. Local
equilibrium badly reflects the anisotropy at the wall and
remaining discrepancies noted so far may be coming from
this assumption. A low Reynolds number modelling would
certainly lead to a better prediction, and because of the
rapid distortion again, arefined modaelling of rapid part of
;hglpressure-slrain terms might improve the prediction
20).
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ABSTRACT

Turbulence structure of a backward facing step
flow ts investigated using the numerical flow field
which is computed by large eddy simulation (LES).
The Reynolds number based on step helght and main
flow 1is 46000. Reliability of this data has been
already confirmed by the comparisons between
experimental and numerica'! data. The profiles of
mean velocities, Reynolds stresses, triple products
and the budget of Reynolds stresses are indicated,
and turbulerce structure of a separating flow field
is numericz:ly discussed.

NOMENCLATURE

Xi ; coordinates 1n tensor notation
N » mean velocity component 1n X, direction
u i fluctuating velocity component n Xl

direction

X,¥.” : longitudinal, vertical and spanwise
coordinates

u,v ; mean velocily components in x and y
directions

u,v,w » fluctuating velocity components in x, vy
and 2 directions

tlo « main flow at the inlet section

H ; step helght

Re ; Reynolds number based on step height and
main flow

INTRODUCT[ON

The turbulent flow over the backward facing step
has been investigated by many experimental and
numerical methods. Although the geometry of the
backward facing step is still simple, this f{low
contains many features of the complex flow
phenomena such as separation, reattachment and
reverse flow. 1t has been recognized that the
conventional ensemble  mean turbulent models
underpredict or overpredict the reattachment length
which is the most baslc factor in this flow. Large
eddy simulation (LES) technique can provide the
detailed informations of the time—-dependent and
three dimensional turbulent flow fields at the high
Reynolds number Reliability of LES has been
promote ' in some basic flow flelde, and it g
needed to investigate the capability of LES for the
practical problems.

We have already computed the backward facing step
flow using the LES [1). The calculation results of
mean velocity, turbulent distribution and
reattachment length were compared with
corresponding experimental values. Although this
computation was done wunder relatively small
spanwise grid number (200 and narrow spanvise
computational reglon (ZH), good agreement between
computational and cxperimental data were shown on
the mean velocities and turbulences

In this paper, larger spanvise grid number (80)
and wider spanwise computational region (4H) are
set up, and turbulence structure of a separating
flow is numerically investigated using LES data.

COMPUTATIONAL CONDITIONS

The basic equations of LES are grid scale (GS)
continuity and momentum equations. Subgrid scale
(5GS) model is the Smagorinsky model with a
variable length scale [1,2] These equations
are then solved using an Adams-Bashforth scheme of
the 2nd order in time and the 2nd order central
finite difference formulae in space. Pressure
fields are solved using a simultaneous iteration
method for velocity and pressure [3).

The computational flow field is a channel with
the backward facing step of step ratio 1.5. At the
inlet of the channel, fully developed channel flow

fields which are computed in driver section
(2Hx2Hx4H) are specified instantaneously, The
outlet 1s located at 30H downstream from the step

where the first derivatives of flow properties in x
direction are set at zero. A spanwise computational
region is 4H, and cyclic boundary condition is used
for this direction. The Spalding's law of the wall
[1,4) is supposed for the wall boundary. Reynolds
number based on step height H and main flow Uo is
46000  The numerical grid number in all directions
are 230x50x80. Ensemble mean values are counted out
using 5000 time steps and spanwise numerical
points. The computational conditions are shown in
Table 1

Table 1. Computational conditions.

T

Computational region 32H (+2H) x 3H x 4H

Numerical grid number 210 {+20) x 50 x 80

Scheme in time Adams-Bashforth (At=0.01)

Scheme in space Central (2nd order)

Solution for pressure HSMAC

inlet B.C Fully develoved channel flow

Outiet B.C d/da=0 (for u, v and w)

i Spanwise B.C Cyclic (for u. v.w and p)

Wall B.C. Spalding’s law of the wall

Smagorinsky model
with varjable length scale

SGS modzl

Reynolds number 46000

NN
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RESULTS AND DISCUSSIONS

The turbulent structure of the separated region
of the flow over backward facing step Is discussed
using LES data.

The contour plot of the stream lines for mean
velocity field is shown in Fig. 1. The
computational reattachment length is about 7.0H,
which {is almost the same as the corresponding
experimental result [(5,6). Comparisons between
experimental and LES data about the mean velocities
and Reynolds stresses have already done in the
previous (coarse grid) computation. No basic
difference between the previous and present data
is observed on the turbulent quantities.

Figure 2 indicates the schematic mechanism of the
budget for the turbulent shear stresses in the two

dimens tonal flows. On the spanwise turbulent
intensity, redistribution by the pressure-strain
term has the predominant effect, since there is no
production term for the spanwise intensities in the
two dimensional flows.

Mean velocity field behind the step has a
separating bubble in which strong reverse flow
exists. The mean longitudinal velocity profiles in
Fig. 3 show that the minimum value of reverse flow
is -0,25U0 at X/H=3. The vertical distances from
the wall at which the peak values of reverse flow
exist decrease with fncreasing longitudinal
coordinate 1in the separating region. The velocity
gradient of the mixing layer behind the step makes
the dominant production for UV and UU respectively.
The separating region at the section just behind
the step is not a dead water area, and has the peak

X/F 10

Figure 1. Stream lines of mean velocity field.

40,

d X1 |

|
dX2

YO L
©

A

d Xy

Figure 2. Mechanism of production for turbulent
shear stresses in two dimensional turbulence.
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value of =-0.08Uo for longitudinal velocity
component. The longitudinal gradient of U 1in the
separating region slightly affects on the
production term of Tu. This effect yields the
positive production near the step and near the
reattachment point.

Figure 4 shows the vertical mean velocity
profiles. The maximum and miniaum values of the
vertical component are 0.05 at the section of X/H=2
and ~0.058 at the section of X/H=5 respectively
The negative velocity gradient in the section Just
behind the step and in the separating region near
the reattachment point produces relatively large
production of Vv,

Turbulent intensities and Reynolds shear stress
profiles at different downstream sections are
plotted in Fig. 5¢a), (b), () and Fig. 6. Although
grid resolution near the wall is not enough to
resolve the wall turbulence structure, the
turbuient profiles of channel flow are
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qualitatively malntained near the upper wall. The
sharp distributions of turbulences in the section
just behind the step are produced by the vertical
gradient of U, and spread to downstream. Turbulent
intensities and Reynolds stress increase with
increasing the longitudinal coordlnate from X/H=l
to X/H=3 ir the separating region. Longitudinal
turbulent intensity sroflle near the step side wall
at the section of X/H=1 has the peak point which is
produced by the production corresponding to the
longitudinal velocity gradient of U.

Figures 7,8,9 and 10 show the profiles of the
triple products related to the diffuslon of the
budgets of Reynolds stresses. In the mixing layer
just behind the step, these terms are roughly
asymmetrical about the inflection polnt. In the
separating region near the reattachment point, the
triple products have the peak point. It s well
known that the main contribution to the triple
products come from the large eddies . Therefore |t
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is probable that the active motlions of the
eddies exist in the mixing layer behind the
and in the region near the reattachment point.

vertical gradient of V Is shown in this region,
too. Behavior of the pressure~strain terms In the
region of mixing layer behind the step indicates

Figures 11,12 and 13 show the typical budgets of that the turbulence energy Is redistributed from Uu
Reynolds stresses. The budgets of the turbulent to Vv and ww. The profiles of the diffusion terms
normal stresses Gu and Vv at the section of X/H=2 correspond to the action of the tripl products. 2t
are shown in Figs. 11 and 12. At the region of the the region near the step side wall of the section
mixing layer behind the step, the production term Just behind the step, the positive productian of
of Uu through the vertical gradient of U s U and the negative production of V¥V are peculiar.
predominant. The production term of VV through the These terms relate to the longitudinal gradient of
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shows
the

U or the vertical gradient of V. Figure 13

the budget of turbulent normal stress gy at
section of X/H=5. In the region near the
reattachment  point, the diffusion term is
predominant. Similar behavior of the diffusion
terms ts  shown in the budgets of the normal
stresses and turbulence energy at the section near
the reattachment point. The diffusion terms of this
region are intensely affected by the action of the

triple products.

CONCLUSIONS

o

Turbulent structure of separating flow field is
numerically discussed on the flow over a backward
facing step. Ensemble mean data are estimated by
using the data computed by large eddy simulat on
According to the discussions on the profiles of
mean velocities, Reynolds stresses, triple products
and the budget of Reynolds stresses, turbulence
structure of separating reglon 1In the backward
facing step flow can be roughly classified inu>
following regions;

of

Figure 14. Turbulence structure separat ing

region

The region on mixing layer behind the step
(Region A in Fig. 14).

The region just behind the step, where the
production terms correspond to dV/dy are appeared

in Vv (Region B In Fig. 14).

The reglon near the reattaching point, where
diffusion terms related to the triple products
predominant (Region C in Fig. 14).

The region near the step side wall of the section
just behind the step, where the production terms
which are due to dU/dx and dV/dy are predominant
(Region D in Fig 14).

the
are
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ABSTRACT

The ncorporation of Reynolds-stress closure nto a
non-orthogonal, collocated fintte-volume framework n which
the discrensation of convection 1is non-dif fusive presems @
number of algorithmic problems not encountered n  more
tradustonal  schemes employing  staggered, rectilinear volume
arrangements  Three issues requuring special consideration are
the iensortally correct incorporation of the wall-related
pressure=strain terms which are important fragments in the
stress closure, boundary conditions at curved walls, and
tterative . tability The first issue, tn particular, artses because
the wall-related terms are tied to the ortentation of the wall
relative to the directions of the Reynolds stresses  The paper
report praciices which address all three problem areas  Three
complex applications are reported, among them the flow
through a sinusodal  pipe constricuion and  shock-induced
separation over a channel bump.

INTRODUCTION

Over the past few years, CFD for general turbulent flow
has advanced along two major fronts without significant
cross-hinks  Numerically, there has been a dramatic shift away
from simple rectilrear geometries towards complex domams
requiring the use of body-fitted meshes. A number of strategies
have been pursued, but the one which seems to emerge as
offering the best compromise between flexibility and algorithmic
simphety  adopts a Cartesian  or  cylindrical-polar  velocity
decomposition within a non~orthogonal finite=volume framework
Such schemes have been developed, for example, by Peric
(1985), Shyy & Braaten (1986) and Majumdar et al (1989)
Mor=over, a number of commercial packages - for example,
ILOW3ID and FLUENT/BFC - are based on this approach
Physically, therc has been a simlarly strong shift away from
eddy-viscosity models towards second-moment closure. This shift
has been motivated, principally, by the re:isation that only the
latter type of models 15 able to capture, in any fundamentally
sound sense, the interaction between curvature-related strain
and turbulence transport.

The importance of curvature 1n  all  recirculating  and
swirling  flows naturally favours the combinauon  of
second-moment models with elliptic-flow solvers.  Winle this
turns out to be a non-trivial task, such models have been
successfully incorporated into a number of recirculating—flow
algorithms [e.g. McGuirk et al (1985), Gaskell & Lau (1987),
Jones & Manners (1988) and Lin & Lesch or (1989)).
However, with very few exceptions, such schemes are apphcable
to Cartesian or cylindrical-polar meshes only, and most adopt a
staggered fintte-volume arrangement. One procedure based on
the collocated approach is that of Obi et al (1989), but this
applies to regular grids oaly, while a scheme by Sebag &
Laurence (1990) adopts a non-orthogonal, semi-staggered
formulation.

Combining se:ona ment closure with a non-orthogonal,
collocated scheme 1s a particularly challenging task Apart from
‘ordinary' complexities associated with non-orthogonality, the
main difficulties arise from boundary conditions, the awkward
tensorial nature of the highly influential wall-reflection terms in
the pressure-strain components of the Reynolds-stress equations,
and from the fact that storage of all stresses at the same
spatial location 1s a strong source of numerical instability or

physically unrealistic oscillatory be.aaviour.

This puper present practices directed towards all three
problem  areas, realised within a recently developed
non-orthogonal-grid  methodology combining  second-moment
closure, non-diffusive discretisation and multigrid convergence
acceleration That same methodology has also been extended to
compressible flow, including transonic domains, and one of the
applications piesented below relates to shock-induced separation
from a channel bump

BASIC NUMERICAL FRAMEWORK

The discretisation process 1s preceded by a transformsntion
of the Cartesian forms of the flow-governing equations to forms
involving  spatial  derivatives  along  the  non-orthogonal
co-ordinates, Involving the use of the Jacobian transformation
matrix. Because the velocity components are chosen to remain
Cartesian  {or, more generally, cylindrical polar, toroidal or
adapting to an arbitrary, user-defined datum line), they can be
treated as scalars, thus circumventing the complexities associated
with fully covariant differentiation of vectors and tensors.

With § and 7n representing the non-orthogonal directions
and r being the radial co-ordinate, the transport equation for
any scalar property ¢ can be written in the following form:

g—g{prw-(:.:)q?ws}+g—5{prv¢-zg—%q?¢n}

- rl) S‘b A1)

where U and V are contravanant velocity components,

U~ uyy = VXp
V- VXp = uy

J is the Jacobian of the transformation, rJ is the ratio of
corresponding volumes (areas) in physical and transformed (£,5)
space, and SP contams diffusive terms involving muxed
derivatives, sources and sinks, includine pressure terms in the
case of momentum. For isotropic diftusivity Tg, the qd’-terms
are.

@ '
q, =Ty (.Vf, + Xf,)

@ =Ty (v + xD

The above terms will be redefined
anisotrop;c turbulence transport.

later in the context of

Next, the ecquation is integrated over the volume shown in
Fig. 1 to yield, after application of the Gauf Divergence
Theorem, a balance of face fluxes and volume-integrated net
source:

(prU)e b = (prU)y &y + (prV), &y - (prV)g bg = riSg
d
+ [rabnye + (ra¥/yy + (radiyg + rd/ng Jop
- [(rab/0e 85 + (i D)y &y

+ (rq?/.l)'n by + (rq‘f/.l)s ds] ...(2)
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Fig. 1: Finite volume and storage arrangement

The convection fluxes are approximated either by the
'Hybrid' (upwind/central-) differencing scheme of Patankar
(1980) or by the quadratic scheme QUICK of Leonard (1979)
or by van Leer's TVD scheme MUSCL (1979). The last
scheme is also used for all turbulence-model equations.

As seen from Fig. 1, the velocity components and pressure
are stored together at celi-centred nodes. This would normally
lead to ‘chequerboard oscillations' when pressure gradients are
approximated by central differencing, reflecting a computational
decoupling between velocity and pressure gradient The
difficulty may be overcome, however, by using the method of
Rhie and Chow (1983) which, essentially, introduces a measure
of artificial fourth-oider pressure smoothing. For the eas: and
north faces of the cell shown in Fig. 1, the Rhie and Chow
interpolation may, for plane flow, be written~

U ~ [(u - DUz é:p)e + DU; o (pp - PE) ])’77

- [(v =DV 5gpYe + DVE o (PP - PE) Jxy . (3)

Vo = [(v =DV 5pp)n + DV, o (pp - pn) Ixt

- [(U e DUy) lsr)p)n + Duy"n (PP = PN) ]yE . (4)
where  Sepp ® (py - Pe), Sypp ® (Ps - Pn)s
overbars denote aveiages, evaluated at faces ‘'e' and 'n’,
respectively, from values pertaining to volumes which abut at
the face in question, DUr DVp - say at pomt P - are the
projected areas, AUE and AVe, identified 1 Fig 1, divided by
the coeificient multiplying the velocity Up in the fmal form of
finite-volume momentum equation (2) (ie for ¢=Up).

The pressure itself 1s determined by using the SIMPLE
pressure-correction algonthm of Patankar (1980) This s
modified to nclude a  density-retardation  methodology
permiting an accurate capturing of shocks [Lien & Leschziner
(1992)}] One example presented later has been computed with
this methodology.

IMPLEMENTATION OF SECOND-MOMENT CLOSURE
Present closure form

The closure adopted herein s the high-Re Reynolds-stress
variant of Gibson and Launder (1987) In terms of Cartestan

tensor notation, for plane flows, this closure may be written as
follows.

dpuy uiu;
_a.)t‘k_L.L__ = Djj + Py,

in which

-%p&ij(+¢ij NG))

d uju ']
dxg 4,

——  Ju; =
Plj - -p ujug —a_xi— - poujug
big = it Sigot O jurt b u

$rjz = cpp [Pij - ﬁ%‘ Pkk]

~ P

2] -
Dlj"gx—k[ckp“ku‘z

du
Xk

—

' ¢ [V to
Gjjwr = P bt [“k“m Nghy 84§ - 5 ugyj ngng

L3 NI

- 3 il ngng] €

b1k, nknj

1 3

Pijwz = P [¢kmz " 84§ - 3
3

2

d’]kl "k“i]f

In the last two contributions, nj is the wall-normal unit vector
in the direction i and f = C“"Js k':S/exAn  with An being
the wall-normal distance

In principle, the equations of set (5) are discretised in
precisely the same manner as any other for any property &,
i.e. the equations are transfurmed, as expressed by form (2),

and then integrated over the finite volume in Fig. 1.
However, in the course of the discretisation and solution
process, three issues require special consideration, namely
stability, boundary conditions and the tensorially correct

incorporation of the wall-reflection terms &, The last issue
arises because the wali-reflection approximations are clearly tied
to the orientation of the wall, via f. Each issue is considered
separately below.

Boundary conditions

In the context of wusing high-Re transport models of
turbulence within finite-volume schemes, it is standard practice
to adopt log-law-based relations to bridge the semi-viscous
near-wall region. One feature of this treatment is the solution
of the turbulence energy or stress equations over the near-wall
cells with cell-integrated productions and dissipation terms
evaluated from the log law.

The treatment adopted here is different and involves a
prescription of all stresses at the near-wall nodes. Values for
the stresses in the log-law region may be derived by focusing
on the stress equations applicable to local energy equilibrium,
0 5Pyy=¢, and setting the wall-distance function f=1. Adopting
the wall-oriented Cartesian frame of reference shown in Fig. 2,
this route can be shown to lead to:

v
e -
A M 8, : N=AN, .nz)
1 13
Trrr7

Fig. 2. Wall- and mesh-oriented co-ordinate systems

~

57 . k(4c,+2cf—4c,c,+2c,c2*+6c;+6&c:-6c;c2)
3c, (¢, + 2c7)

. . ~ 1.098k
T . 2(-l4c Tc -2c, )k - 0.247k

§(c,+ic 1)
-~ (6)
WZe2k-u?-V7Za0 653k
= 1-c,+1.5¢,%) (2(-14c, +c,-2¢,%)
v/ [ Cy+1.5¢", I 3(c 42’ ) ] &

- 0.255k J

with the last obtained with the aid of

ol
¢ a Sz A7)

«k4n
Next, the above stresses in wall-oriented co-ordinates must
be transformed to the primary Cartesian system in which the

velocity-vector 15 decomposed within the numerical scheme.
This can be achieved by:

T -
[Uij]—A [o‘iJ]A .. (8)

where ¢ 1s the wall-oriented stress system and ¢ is the primary
Cartesian one With the wall-oriented unit vectors denoted by
¢j and decomposed nto components associated with the primary
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Cartesian system,

ey = (t,, ty, 0)
e, = (n,, ny, O )
e, = (0,0, 1)

as shown in Fig. 2, A arises as:

LT BN
A=1Imn | n | 0O L (10)
0 0 i

and AT s the transpose of A. Hence, the Cartesian
stresses may be evaluated as.

-~ ~ A
7 -3 2 -7 2 —_
w2 ~u'd oty v'ng + 2u'vign,

- ~ -

— 2 ——

Vi -l t2+v'§n§+2u'v' t,n, (11)
~ A~ ~

NEYIETYE Ve wv
u'vi= u’ tyt, + v'inn, +u'v' (t,n, + tzn‘)J

The above stresses are used as boundary conditions for the
inner field

Wall-reflection _terms

The task at hand may be tllustrated by focustng on any
single curved wall, as shown m Fig. 2, with the wall-normal
vector being (n,.n,). The wall-distarce function f may then
be related to Cartesian, velocity-ortented components by
fx=nf £; fy=ny f, fgymmom,f (129
With the above transformed wali~distance-function components,
1t can be shown that the stress equations (for 2D plane cases)
may be written®
Ciy=Djj=a, Py + 0, Pyt ay Py + 0.5y Pyy

'3 Ser——t

+op (o T oy V2 4 a, Wv' ]+ agec . (13)
with the a-coefficients tabulated below for u* 7, v' 2 and u'v',
U i“'J - G“"

hv,u-J -ve urqury = U

a, = lac, + Zcz*Fw 0, =~ c,*fx a =15 c,*fxy

@ waCipy a; = 1-cy+ 2e% gl ay = 15 ¢%fyy

~

* *
ay = ¢y fyy ay = ¢ fyy ay; =1 -c¢,

+1.8e % (4 0y)

w

2
ag -y (ey = 2¢,%0 | a, - % (€3 = 20,"fy | ag = = 2¢;M My

+ C:*fy), + e*y)
ag = ~(c,+ 2,7 fy) | ag = ¢] fy ag =~ 1 5¢] fyy
ag = ¢y Iy ag = = (¢, + 2y fy)fag = =135 ¢ fyy
4y = =) fyy a, = el fyy o, ~ = (c
+1 5§ ¢} [fx+fy])
2, ! I
ay - 3} éa,-}‘c,-n ag = 0

Tavie 5 a-coefficients 1w equition (13)

The abuve .:ja o “ave Deen derived via two entirely
different routes, n.:  .volving the direct insertion of the
wall~distance transformations into the wall-reflection terms of
equaton (5) and the oiher proceeding through a rigorous
transformation of all terms in &;,. Both routes are found to
lead to identical results (details may be found in Lien (1991))

Stability

Low iterative stability 1s a scrious difficulty in elliotic
solvers, particularly those based on a collocated arrangement

and using non-diffusive discretisation. In essence, the difficulty
arises from the absence of eddy-viscosity terms and a numernical
decoupling of stresses from related strains. The problem has
been addressed here by extracting apparent viscosities from the
(§,n)-transformed partial differentiat equations governing the
stresses. It can be shown that terms appearing naturally in the
stress equations allow the interpretation:

) l-c, + 1.5 c X(F{#f;)  ku 2 .
P Rl veras v s e i M L
——— which is associated with the strain [au‘]

J
while for i=~j (no summation),
4 2
2 - 3 c, + 3- cz*(4fi+fj) ku—r—z

i T c, + 2,0 € -+ (15)

————5 which is associated with the strain [g%-]
i

where c2‘=c2c2', and f; and f; are either fy or f,, as defined
by equation (12) Insertion of the above wiscosities into the
u-momentum equation, for example, leads to.

u 2 ?

A =Wy Yq t X
.. (16)

2

1

u 2
g, = By YE Y My X

) .
S = - {(r)'n) 3 P:X* (= ryp) g-;] p;)}

- g (- rx ) oo a =
3 Xp) puvy - 3; (rxg) puvy

with (an
ux ~2
P - P+ puy ]
puy . pﬁ;, Lo (18)
puL = pu? 4 -(—%_1'-;- (ryn) u
i T 4 K
puy = put? + TF-H' (-ryg) uy

{19)
puvy, = puV'+ '(Jriﬁ (-rxy) ug
pﬁy ~puv + T:‘iﬁ (rxg) uy

The addition of normal stresses to the pressure, as donc
wn relations (18) which are inserted into equations (17), is of
considerable sigmficance to stability, in the context of the Rhie
& Chow interpolations (3) and (4). It should be evident that
the interpretation of normal stresses as pressure  fragments
means that any celi-face velocity is not merely sensitised to the
pressure differences centred on that face but only to the
normal-stress difference. In effect, this practice introduced
(artificial) fourth-order normal-stress diffusion in addition to
fourth-order pressure diffusion.

RESULTS

The capabilities and performance of ihe above methodology
are exemphfied by three examples. a flow behind a
backward~facing step [Durst & Schmidt (1985)) computed with
a deliberately distorted mesh, a flow through a sinusoidal pipe
constriction [Deshpande & Giddens (1980)] and a transonic flow
over a channel bump ['Case B' of Delery (1983)] in which the
shock induces boundary-layer separation. All  cases are
two-dimensional, although the code (in conjunction with
eddy-viscosity modelling) applics to and has been used for
three—dimensional flows, including multigrid acceleration [Lien &
Leschziner (1990)).

Fig. 3 and 4 compaic k-¢ and Reynolds-stress-model
calculations performed with a 200x50 grid, with the aid of a
3-level multigrid convergence-acceleration scheme, for Durst &
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Schmidt's step. QUICK was used to approximate the convection
of momentum, while convection of turbulence quantities was
discretised by means of the MUSCL/TVD scheme. Only
streamfunction plots and a few velocity profiles have been
included here, although extensive comparisons with experimental
data have been performed. The experimental reattachmem
length is about 8, and the stress model is seen to predict this
value well. However, there is some evideiace that grd
skewness generally increases sensitivity to grid density, and
hence further grid refinement is needed to justify confidence
the predicted sclutions. indeed, closer inspection of the
streamlines reveals 'kinks' whose positions coincide with those at
which the grid disposition chinges abruptly.  Whilst there are
no dramatic differences between the solutions returned by the
k-¢ mode!l and the stress closure, the latter evidently predicts a
longer recirculation zone, a secondary corner eddy and steeper
shear strains in the curved, seporated shear layer. All may be
attributed to curvature-induced attenuaiion of turbulence and
have been obseived i previous calculations of similar flows
Contrary to observatons by Obi et al (1989), Lasher &
Taulbee (1990) and Sebag & Laurence (1990), no abnormal
reversal in the direction of the separation streamline is
predicted as the point of reattachment is approached. This
defect has been attributed to an inappropriate amplification,
rather than attenuation, of the wall-normal turbulence intensity
by the wall-related contribution to the pressure-strain model,
One might suspect that the severe grid skewness at the
lower wall could have suppressed the manifestation of this
genuine model defect However, test calculations by the
authors with a Cartesian mesh, somewhat coarser than the
200,50 non-orthogonal one, yielded a solation very similar to
that shown i Fig 3.  Intersstingly, a replacement of the
rounded (experimental) inlet profile by a uniform one was
found to provoke a directional reversal of the separation
streamime On ihe other hand, ’he present authors have
observed that variations 1n the treatment of wali~boundary
conditions can have a consilerable influence on the manner in
which the separation streamline approaches the reattachment
point Hence, the authors are not entirely convinced that the
the anomaly is linked solely to ¢,Jw2

$jwa

Figs 5 to 8 show solutions obtamned with the high-Re k~e¢
model, a low-Re k-¢ varnant of Lien (1991)* and with the
stress=mode!  for the flow through Deshpande & Giddens'
sinusoidal pipe constricion  As in the previous case, a
combination uf QUICK and MUSCL was used for approximating
convection, here over grids vaiying between 120x24 and 120x40.
The comparison of streamfunction plo's i Fig 5 reveals some
trents which are consistent with those observed in the previous
case For example, the stress closure predicts, here too,
stecper velocity gradients in the shear layer bordering the
separation zone. However, there are also marked differences
Thus, here, the tendency of the separation streamhine to double
up at the pomt of reattachment 1s evident, a feature which
may have been enhanced by the nearly uniform velocity profile
ahead of separation. None of the models returns the correct
behavicur of the centrelinz velocity and the wall pressure, but
the stress model clearly responds more sensitively to the
adverse pressure gradient beyond the throat, inducing earlier
separation and dimimishing the consistent tendency towards an
excessive recovery of pressure Interestingly, the comparison
conveys the message that relaminarisation of the boundary layer
during the acceleration phase ahead of the throat does not
scem to play an essential role in the separation process
Implicit 1n this statement 1s, however, the assumption that the
low-Re k-¢ model gives a realistic representation of the history
of relammnarisation 1n the fiow beyond the throat, just ahcad of
separation,

Firally, Figs. 9 to 11, give results obtained with the
high-Re k~¢ modet and the stress closure for the transonic
bump flow ot Delery. For the latter model, solutions are
reported for two grids, one containing 95x35 and the other
130x50 lines Fig. 9 gives an oveiall view of the flow field in
terms of Mach-number contours, and the plots reveal the
characteristic A-shock structure arising from the interaction of

+ This model has been specifically constructed to yield a
near-wall length scale in accord with that used in Wolfshtein's
one~-equation model (1969).

the normal shock with the wall boundary layer. Fig. 10
compares the predicted pressure variations along the bump wall
and the Jduct-centre plane with Delery's experimental data. The
centreline  variation has been included to convey the
shock-capturing capability of the procedure; this s not well
brought out in Fig. 9, the appearance of which is marred by
minor oscillations around the shock. The characteristic pressure
plateau in Fig. 10 is a reflection of the separation zone, and
the comparison gives a clear indication that the Reynolds-stress
model is considerably more sensitive to the shock, yielding
earlier separation and a more extensive recirculation zone.
This behaviour is broadly consonant with that observed earlier,
particuiarly in the previous pipe constriction. The higher
sensitivity of the boundary layer to the shock predicted by the
stress model is confirmed by the velocity profiles given in Fig.
1. Evidently, separation occurs earlier (the first location,
x/H=1.9, is within the A-shock), and the displacement of the
boundary is larger; indeed, displacement is too large, which
then inhibits recovery downstream of the reattachment point.
Further results for velocity and turbulence gquantities may be
found in Lien (1991). It is finally interesting to note that
cartier calculations by Dimitriadis and Leschziner (1990) for a
similar transonic flow (Delery's 'Case C') with a cell-vertex
scheme and an algebraic variant cf the present Reynolds-stress
modet show differences between k-¢ and stress—model solutions
which are quite similar to those reported here.

CONCLUSIONS

The paper reported the successful inclusion of full
second-moment closure into a general, non-orthogonal,
collocated  finite-volume scheme in  which convection s

approximated by essentrally non-diffusive convection schemes.
Particular emphasis was put on numerical practices pertaining to
stability, wall-boundary conditions and the wall-related
fragments of the pressure-strain model. The application
examples reported, whilst necessarily giving a rather superficial
and incomplete view, serve to reinforce earlier obeervations
that, for separated flow, second-moment closure offers benefits
relative to the eddy-wiscosity framework. They also confirm

previously reported weaknesses, however. Thus, there is
evidence of an insufficient rate of recovery following
reattachment, and of an erroncous representation of the

reattachment process itself. The latter may be alleviated, but
not elimmated, by modifications to the wall-function—-based
near-wall treatment, and this points to the need for new
proposals for modelling the influence of wall~induced pressure
reflections on the pressure-strain process
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Abstract

An mmportant aspect of supersonic combustion 1s the proper mixmg of
fuel and oxidizer In the present work, temporal direct numerical sunu-
lations of the reacting compressible shear layer are presented Although
the Reynolds number is low, we believe that the general flow structures
found are charactenstic of what would be found for the large scale struc-
tures of high Reynolds number turbulent reacting compressible nuxing
layers Results mdicate that with heat release and at large Mach num-
bers, the nuning of fuel and oxidizer by large-scale engulfment of fluad
from both sides 1s not hkely to occur Instead, fluid from each of the
free streams s first muned with product and then diffuses to the reaction
zone

1. Introduction

For the plane reacting compressible shear layer, the existence of two
maxima of the mean density-vorticity profile (77) leads to the existence
of two distinct mstability modes, the 'outer modes’ [1] Each of these
outer modes 1s associated with one of the free streams Its greatest
disturbance amplitudes occur in this stream and its phase velocity is
comparable with the mean velocity at the 77 peak 1n this stream

The development of two-dimensional and three-dunensional reacting
muxing layers has been sumulated to study several aspects of the evolution
of the layer, including (1) non linear effects associated with the growth
of a single tnode, (2) the interactior, between the fast and the slow outer
modes and its consequences on the mining process, (3) the absence of
painng for compressible reacting mxing layers and 1ts consequences on
the mechanism for the mining layer growth, and (4) the obhquity of the
large-scale structures

Two-dimensional simulations are performed using an extension of the
Poinsot-Lele code [2] for diffusion flames A Pade scheme with accuracy
of sixth order in space and third order Runge-Kutta mn time 1s used [3,4)
All the calculations are performed on a regular mesh, with equal mesh
sizes tn the x (streamwise) and the y (cross-stream) directions  The
boundary conditions are periodic i x and non-reflecting 1 y

‘The mean flow consists of a reacting plane ftee shear layer between
a low-speed air flow and a high-speed mixture of fucl and inert gas The
mean velocity and temperature profiles are imtialized using the com-
pressible boundary layer equations A self-sinular sofution 1s obtained,
by assutmng an infinite reaction rate, Prandtl and Lewis numbers equal
to unity, constant speaific heats, and viscosity u proportional to tem-
perature T Perturbations are added to the mean profile in the form of
eigenfunctions of unstable modes from temporal hnear stabality analy-
s18, 1 which viscous and molecular diffusion effects were 1ignored. Unless
otherwise specified, the amplitudes (defined as the ratio of the largest
velncity fluctuation to the fast-stream velocity) are 0 002 for the funda-
mentals and 0 0004 for their subharmontcs

The flurd dynatmes equations solved are

Jp | dpu, _
[T

Jdpu, a/m.uz ﬁ _ .‘?ﬂl.

o " o, Oz, = Oz,’

dpey + Gpui(es +plp) _ Oury
ot Oz, T
dpYy | dpuYy - [/} ( D(Z)_/L

o Oz, E:: s Oz,
8pY, dpuY, 1_92'_,_
Oz,

at Iz,

dg, .
- ('3—2: + fu,

)=,

3 .
= .&T(pD )~
The chenucal scheme 1s single step and irreversible and the reaction rate

18
w = Ap?Y;Y e 2eT

Ze 1s the nondimensionul activation temperatute, chosen equal to 2 The
heat flux 1s ¢;, 1, 15 the viscous stress tensor, e; = ¢, + uf/? is the
total energy density, and Y; and Y, are the mass fractions of fuel and
oxidizer The heat release parameter, defined as 8 = AH;/(CpTi) 19
chosen equal to 2 The vorticity thickness §,, is used as the characteristic
length, and the reference temperature and viscosity are those of the fast
streamn The velocities are nondimensionalized by the sound velocity of
the fast free stream In the present application, Se = Pr = Le = 1,
n= p”!(T/T,,/)O 78 the Mach number of the fast stream is M; = 3.2
and the Mach number of the slow stream Mz = 1 6 yielding a convective
Mach number M, = 08 and flame convective Mach numpers M;; =
Mj2 =03 The flame convective Mach numbers are defined by.

M= 2=l (&i-r?-) M.
Uy -0 \T7+ 7

where €7, and &7 are the sound velocities in the fast stream, in the
slow stream and i the flame region, and Uy, U7 and Uy the fluid velocities
m those regions As noted by (1], the flame convective Mach numbers
are hhely to be the preferred parameters for correlating compressibility
effects Here, for flame convective Mach numbers equal to 0 3, the large
scale structures should be two-dimensional

The mass fraction of fuel and oxidizer are both equal to 0.2 The molar
mass and the ratio of specific heats are constant The Reynolds number
and Dambhohler are defined as

Re = AU, [vrey

Da = ApyYyeoe 2116, /AU

For a reacting shear layer, the large variations of transport properties due
to temperature variations requires the use of large Reynolds numbers.
In our simulations we have used a Reynolds number equal to 4000, and
approximately 150000 gnid points in 2D.

Three-dimensional simulations ate petformed using an extension of
the Sandham-Reyuolds code (5] to diffusion flames. Ihe main purpose
of this 3-D run 1 to study the cffects of heat release on the obliquity
of the large scale structures of the compressible reacting mixing layer.
A Pade scheme with accuracy of sixth order in y, Fourier modes in x
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Figtre 1 Contour of (a) pressure, (b) vorticity, (c) minture fraction
and (d) reaction rate of a typical large scale structure of a low Mach
uumber (M. = 0 05) no heat release reacting mixing layer

and z and third order Runge-Kutta in time are used A hyperbolic
tangent mapping is used to keep the majority of the grid points in the
vortical region of the layer The boundary conditions are periodic in x
(streamwise direction) and 7 (spanwise direction) and non-reflecting in
the y direction

The intialization and the notation are the same as in the two-
diumenstonal simulations  One 3-D simulation has been perforined using
61x300x64 puints 8 instability modes were included 1n the simulation
one fast and one slow outer mode, their subharmonics, one fast and one
slow 45 degree mode and their 45 degree subharinenies The amplitudes
of the fundamentals are 0 002 and the amplitudes of their subharmonics
0001

2. 2-D simulations results

The 2-D sunulations confirm the existence of the outer modes for com-
pressible and imcompressible shear layers  For compressible reacting
shear layers, 1t 1s shown (1) that the fast and the slow outer mode
develop without interacting and (2) that no paining occurs between one
outer mode and its subharmonic For incompressibie shear layers, simu-
lations nitialized with the fast and slow outer modes and their 'central
subharmonic’ leads to the coupling of the outer modes, suggesting that
(3) the outer modes are not the significant instability miodes of the re-
acting incompressible shear layer

21 Overview of onc compressible outer mode

2-D sunulations untialized with only the slow outer mode show that
this mode develops on 1ts respective side of the reaction zone wit', it
spreading across the whole layer  Sumilar results are obtar | for the

Load o abow weaoe Fa
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For later comparison, figure 1 shows the fluctuations of (a) pressure,
(b} vorticity, (c) mixture fraction, and (d) reaction rate for a low Mach
number reacting mixing layer without heat release Note the large-scale
entrainment of fluid from both sides by the mstabiity mode and the
increase m flame surface displayed by the reaction rate

Figure 2 shows the corresponding results for a typical developed slow
outer mode of a reacting compressible shear layer. Only the vortical
region of the computational domain 18 shown The Damkohler number 1s
equal to 6 but sumilar results are obtained for lower Damkdhier numbers
Here, fuel is almost undisturbed and diffuse to the reaction zone, while
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Ficure 2 Contour of (a) pressure, (b) vorticity, (c} mixture fraction
and (d) reaction rate of a typical slow outer mode of a compressibie
reacting shear layer (M, = 0 8) with heat release (T} = 3)

oxidizer and hot product are rmxed by the large-scale structure The
chemical reaction occurs at the interface of the fuel and the hot mixture
of product and oxidizer, and no additional flame surface 1s created The
slow outer mode generates radiating pressure waves in the fast stream
The angle of those waves (sinf ~1/(M; ~ M3)) and the absence of such
ptessure waves in the slow stream, indicates that the slow outer mode
approximately travels at the slow stream velocity

Figure 3 shows the tune variation of the kinetic energy of the slow
outer mode The energy grows, saturates and then sharply decays. This
decay is related to the existence of the radiating pressure waves, carry-
ng energy away from the layer This behavior 1s different from what 1s
observed for non-reacting mcompressible mixing layers, where after sat-
uration of the instability mode, the vorticity thickness and the kinetic
energy 1 that mode exinbits a damped oscillation n time [5)

22 Interaction of the fast and slow ouler modes

2-D simulations of reacting shear layers initialized with only the fast and
the slow outer mode mdicate that the two outer modes simultaneously
develop on their respective side of the mixing layer without interacting
Figure 4 shows the results in this case at the same time as mn Fig 2
"The amplification rates of 1he two outer modes being different, the slow
mode 18 almost at 1ts saturation point whercas the fast outer mode 18
still growing. Opposite results can be found depending on the position of
the flame, on its temperature and on the free stream wemperature ratio
(1] Each outer mode generates radiating pressure waves in the oprosite
stream, modulated at the frequency f = L./(T7 — Uz) whete L. 13 the
wavelength of the instability modes The time variation of the maximum
reaction rate (Fig 5), vorticity thickness, and maximum vorticity also
exhibits this oscillatory behavior, due to the constantly varying phase
difference betw cen the two outer modes.

Note by comparing with Fig. 2 that the slow outer mode is not
disturbed by the prescnce of the fast outer mode The vorticity and
muxture fraction contour overlap in the slow side of the mixing layer. The
fast outer mode remains associated with the fast free stream and only
mixes fuel and product, whereas the slow outer mode remamns associated
with the slow free stream and only entrains oxidizer and product This
suggests a two-step muxing process where fluid from each of the free
streams is first mixed with product and then diffuses to the reaction
zone as described in fig. 6.
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FIGURE 5 Time vanation of the maximum reaction rate for the
reacting compressible shear layer of figure 4
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FiGure 6 Schematic of the reacting muxing layer

The existence of two bumps on the pdf of the mixture fraction Z (Fig
7a) coniirims tius two-step muxing process Une bump s located at Z =
0 75, corresponding to equally mixed fuel (Z = 1) and product {Z = 0 5)
and the other one at Z = 025 corresponding to equally mixed oxidizer
and product Note the absence of product hete, which markedly differs
from the typical low Mach number non-reacting shear layers results. The
muxtute fraction exhibits two ramps (Fig 7b), remuniscent of the ramps
experimentally observed by Clemens in the non reacting case at Mc=0.62
{6]. Those ramps are the direct consequence of the existence of the outer
modes, with the Clemens results suggesting that outer modes might be
present at moderatc convective Mach numbers even in the non reacting
case.

et o1 7Y et e
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(r) et (d) l—v——v—v—-v—v—v—v— 4

Figure 4 Contour of (a) pressure, (b) vorticity, (¢) mixture fraction
and {d) reaction rate for simulation started with the fast and the siow
outer mode of a compressible reacting shear layer (A, = 0 8) with heat
release (Ty = 3)

These results are significant 1n terms of the effects of the outer modes
on the reaction rate For incompressible react.ng mixing layers, large-
scale structures increase the flame surface area, which increases the total
reaction rate For compressible reacting shear-layers, the mechanism
15 different The reaction zone remams plane and no additional flame
surface 1s created, but the large scale structures feed the flame region
with a hot mixture of fuel and product on one side and a hot nixture
of oxidizer and product on the other side The local reaction rate gets
larger, thus mncreasing the total reaction rate

28 Interaction of the ouler mode wnth 1ts subharmonic

In the third section of our work we examine the interaction of one outer
mode with its subharmonic for reacting shear layers. For non reacting
mixing layers, the usual mechanism of interaction 18 pawing, where en-
ergy 1s transfered from the fundamental to the subharmonics 1n one eddy
turnover time Figure 8 sketches the phase velocities of the mstabihity
modes of a reacting mixing layer versus wavelength at two different Mach
numbers (1] Note the absence of central imstability modes at ngh Mach
numbers,

For reacting incompressible shear layers, simulations [7] mndicate that
the energy transfer does not occur n one step as m the non-rcacting
case. The phase difference between the fundamental and its subharmonic
(which is a central mode and thus has a different phase speed from the
outer modes) 15 constantly changing in time and energy 18 transfered from
the fundamental to the subharmonic through a succession of pairings
and tearmgs Simulations imtialized with the fas. and slow outer modes
and their central subharmonics show that the outer modes mnteract and
couple, resulting in large-scale structures stumlar to what 1s observed for
non reacting shear layers. This result suggests that onter modes are not
significant instability tnodes for incompressible reacting shear layers.

In the reacting compressible case, no central subharmonics exists,
The fast outer mode has fast outer subharmonics and the slow outer
mode slow outer subharmonics Our simulation shows that pairings
do not occur between outer modes and their subharmonics. The time
variation of the kineti. energies of one fast outer mode and of its sub-
harmonics, shows that those two modes grow, saturate and then decay
independently from one another, similar to what we observed in Section
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reacting mang layer of figure 1 at a shghtly later time

21 This suggests that (1) unlike what was observed for the mcom-
pressible non-reacting shear layers, in the reacting compressible case, a
large distribution of mstability modes will be present at a given time
n the shear layer, all having different growth rates, with some growing,
some saturating and some decaying Fast outer modes will remain in the
fast sublayer and slow outer modes 1n the slow sublayer (2) The growth
mechanism will not be through pairing but will result from the various
growth rates of all the mnstabulity modes present i the layer at a given
mstant of tune

3. Early 3-D simulations results

Three dimensional direct numerical simulations were used to mvestigate
the following question Does heat release cause the large structures of
the reacting shear layer (slow outer modes 1n the slow sublayer and fast
outer modes in the fast sublayer) to remam two-dimensional at lgh
Mach numbers as predicted by hnear stability apalysis  This result 1s
important m terms of its effects on the entramnment and the subsequent
nuxing process At this writing, the sunulation has been run for 80 hours
on the Cray-YMP The flow time non-dimensionalized by the fast stream
veloaity and the mtial vorticaity thickuess is approximately t=22 which
15 still in the lincar range Guided by 2-D) sunulations, we estimate non-
linear effects to become significant around t=40 Figure 9 shows the
variation of the hinetic encrgy of the various modes Note that the 2-
D modes grows sigmficantly faster than the 3-D ones, thus confirnung
lincar stability results "The growth rate agrees well with values obtamed
using the lincar stability analysis

Fast outer mode

LOW MACH NUMBER
=) Central subharmonic ONE CENTRAL
mode SUBHARMONIC EXISTS

Slow outer mode]

K¢

\

Fast outer mode
Fast subharmonic outer mode

/Slow subharmenic outer mode

Slow outer mode

HIGH MACH NUMBER
NO CENTRAL
SUBHARMONIC PRESENT

Ficure 8  Schematic of the phase veloaty of the nstability modes
of the reacting muxing layer (a) Low Mach number (b) High Mach
number

8
>
o
< o 2D fundamentals
s A 45 fundamentals
o 61 ® 2D subharmonics
'ﬁ & 45 subharmonics
g
X
$ 47
N
=
]
g
8
e
H 2
E
k-]
s
e 0 T v T
0 10 20
time

Ficurk. 9  Time vanation of the total kinetic energy of the 2-D and
43 degree mstabiitty modes

At this point of the simulation no interaction 18 observed between' the
fast and the slow outer modes The perspective view of the high vorticity
region (vorticity magnitude equal to 90% of the maximum vo.rhcny)
show the existence of the two sublayers inside the shear layer (Fig. 10)
‘The hot flame region separates the two sublayers and is unaflected by the
presence of the instability modes. no additional flame surface is created
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Fratre 10 Surface of constant vorticity (60 % of the maximum vorticrty
at time t=20)

Figure 11 shows the same information as i Fig 10 at a slightly dif-
ferent time Note that although the time lag between the two figures s
small, the appearance of the mivng layer has marhedly changed The
two layers are traveling at two different speeds and "snapshots’ tahen
from the top or thie side of the mxing layer are constantly varying with
tume This suggests that clearly orgamzed structure will be harder to
distinguish i the reacting compressible case than i the non-reacting
incompressible case  Experunentally, lovking at their indirect manifes-
tations, such as pressure waves will be a way to estabhsh their existence

Simulation 1s continung on beth the Cray YMP and the hypercube,
to study the mteraction between furdamentals and subharmonics as well
as mteraction between fast and slow outer modes From our 2-D simula-
tion results the expected resnlts are an absence of pairing (energy being
transfered continuously from the fundamental to the subha monic, n-
stead of in one time as i panag) azd an absence of interaction between
the fast and the slow modes

4. Conclusions

Temporal 2-D and 3-D direct Lumenical simulations have been used to
study the large-scale structures of compressible reacting mixing layers
Our results mdicate that reacting compressible shear layers can be seen
as the reunion of two non-intercating fast and slow sublayers Instability
modes developmg  the fast or the slow sublayer were shown to be
two-dimensional and no pairing was observed i our simulations It was
shown that mixing of fuel and oxidizer by large-scale entrainment of flind
from both side was not hhely to occur for reacting compressible shear
layers, and a two-step mixing mechamsm was proposed where flmd from
cach of the free streams is first mixed with product and then diffuses to
the reaction zone

Fiovid I Surtace of constant vortiaty (9% /maximum vorticity at
tune 22
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ABSTRACT

The present study investigates compressibility effects on turbulence
by direct numerical simulation of hotnogeneous shear flow A primary
observation 1s that the growth of the turbulent kinetic energy decreases
with increasing Mach number The compressible dissipation and the
pressure-dilatation are shown to contribute to the reduced growth of
hinetic energy Models are propesed for these dilatational terms and
verified by direct comparson with the simulations. The differences
between the 1ncompressible and compressible fields are brought out
by the examination of spectra, statistical moments, and structure of
the rate of stram tensor
1. INTRODUCTION

We considert the case of spatially hcmogeneous turbulence sustained
by a parallel mean veloaty field @ = (Sz2,0,0) with a constant shear
rate S (see Fig 1) Such a fiow 1s perhaps the simplest 1dealtzation of
turbulent shear flow whete there are no boundary effects, and where
the given mean flow 15 unaffected by the Reynolds stresses Neverthe-
less, the crucial mechanisms of sustenance of turbulent fluctuations by
a mean veloaity gradient, and the energy cascade down to the small
scales of motion are both present 1n this flow,

The homogencous shear flow problem has been studied experimen-
tally by Tavoularis and Corrsin (1981) among others Rogallo (1981)
and Rogers and Mon (1987) have investigated the incompressible ho-
mogeneous shear problem at great depth through direct nuinerical
simulations These simulations, albeit at low turbulence Reynolds
numbers, have provided turbulence statistics which are 1n good agree-
ment with expeniments performed at relatively higher Reynolds num-
bers Furthermore, since the sunulations provide global instantaneous
fields. the turbulence can be studied 1n much greater detail than
phys:cal expernnents

Recently there has been a spurt of activity in the direct numen-
cal stmulation (DNS) of three-dimensionsi compressible turbulence
Decaying 1sotropic tucbulence has been studied by Passot (1987), Er-
lebacher et al (1990}, Sarkar et al (1989), and Lee, Lele and Moin
(1990) 'The simulations of Etlebacher et al (1990) identified daffer-
ent transient regumes including a regime with weak shocks, and also
showed that a velocity field which is smtially solenoidal can develop a
sigmificant dilatational component at later times Sarkar et al (1989)
investigated the statistical moments associsted with the compressible
mode 1n their simulations, and determined a quasi-equihbriumin these
statistics for moderate turbulent Mach numbers which was then used
to mode] various difatational correlations Lee, Lele and Moin (1990)
studied eddy shocklets which developed 1n their sunulations when the
imtial turbulent Mach number was sufficiently high {3, > 0 6) Kida
and Orszag (1990) prumantly studied power spectra, and energy trans-
fer mechanmisms between the solenoidal and dilatational components
of the velocity 1n their simulations of forced 1sotropic turbulence

Physical expeniments have not been and perhaps cannot be per-
formed for homogeneous shear flows at flow speeds which are suffi-
ciently hugh to introduce compressible effects on the turbulence How-
ever, direct nurrerical sunulation of this problem could provide mean-
ingful data, especially since DNS for the incompressible problem has
t en successful i giving realistic flow fields The compressible prob-
lem was considered by Feiereisen et al (1982) who performed rel-
atively low resolution 64° smulations and concluded that compress-
1bility effects are small. Recently Blaisdell ot al. (1990) have also
considered compressible shear flow. We have performed both 96% and
1282 simulations which have allowed us to obtain some interesting new
results regarding the influence of compressibility on the turbulence.

In contrast to the results of Fetereisen et al,, our simulations which
start with mcompressible imtial data develop sigmficant rms levels
of dilatational veloaity and density We find that the growth rate
of the hinetic energy decreases with increasing Mach number as well
as ncreasing rms density fluctuations and show that the compress-
ible disstpation and pressure-dilatation contribute to ths effect Since
these dilatational terms are unportant cousequences of compressibil-
1ty, we propose models for the pressure-dilatation and compressible
dissipation to be used in computations of enginecring turbulent flows

Further details on second-order moments, thermodynamic stats-
tics, probability density functions and lgher-order moments can be
found n Sarkar, Erlebacher and Hussaim (1991) and will not be dis-
cussed here In this paper, we will present new results comparing
the compressible and incompressible components by examnation of
spectra and struciural statistics of the rate of stran tensor
2. GOVERNING EQUATIONS

The compressible Navier-Stohes equations are written 1n a frame
of reference moving with the mean flow @ Ths transformation,
which was introduced by Rogallo (1981) for incompressible homoge-
necus shear, removes the exphait dependence on &, (z2) n the exact
equations for the fluctuating velocity, thus allowing the nnposition of
periodic boundary conditions in the z, direction The relation be-
tween 7 and the lab frame z, 15

rj=r =Sty | iy=uz, 13 =23

Here § denotes the constant shear rate @) o In the transformed frame
x;, the compressible Navier-Stohes equations take the form

Bip + (o) 4 — St(pug")1 = 0 0]

Bulpw) + (pu'u')y = —pa+ 7'y, = Spua'dy
+  Stpuz'u,’) 1 + Stpadia — Str'yzy (2)

Op+uy'py+ypuy, = Stupi+4Stpro;+@
+ (7= AT, - 28Tz + SH*T ) (3)

p=pRT “

where @ = 7, u, , 15 the dissipation function, u,” the fluctuating veloc-
1ty, p the instantaneous density, p the pressure, T' the temperature, R
the gas constant, and & the thermal conductivity The viscous stress
Is

2
Ty = Wty + ) - Eﬂxuk,k”u

where s 1s the molecular viscositv = "ich 15 taken to be constant All
the derivatives in the above »ys «m are evaluated with respect to the
transformzd coordinates z;

A Fourier collocation meithod s used for the spatial discretization
of the governing equations A thi 1 order, low storage Runge-Kutta
scheme 13 used for advancing te.= ».lution in time,

3. RESULTS

We have perforried simulations for a vaniety of initiai conditions and
obtawed turbulent fields with Taylor microscale Reynolds numbers
Rey up to 35 and turbulent Mach numbers M; up to 0 6. Note tuat
Rex = gA/v where ¢ = \/ﬁ and A = q/\/u,;w(‘ , while M; = ¢/f¢
where € 13 the mean speed of sound. The computational domain is a
cube with side 2r. The results discussed here wete obtamned with a
uniform 962 mesh overlaying the computational domatn.
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3.1, COMPRESSIBILITY EFFECT ON KINETIC EN-
ERGY

Figs 2-5 show results from simulations which start with incompress-
ible data, that 1s, density 1s constant and the divergence ¥V u =90, but
have different initial Mach numbers MMy 0. The imtial pressure 1s cal-
culated from the Poisson equation, and the temperature 1s obtained
from the 1deal gas equation of state The DNS results of Fig. 2 show
that the level of the hinetic energy K at a given time decreases with
increasing My o Thus an wcrease in compressibility level, decreases
the growth of turbulent kinetic energy in the case of homogeneous
shear flow See Table 1 for the initial parameters of the DNS cases

In order to explain the phenomenon ot reduced growth rate ot hi-
netic energy, we consider the equation governming the hinetic energy of
turbulence m homogeneous shear which 1s

do_ oy - - -
PK) = PP = Pes = Pec + p'd (%)
where P = —Spuiu? 1s the roduction, ¢, = Ro'w’ the solenoidal
pUY Uy _l_ 1

dissipation rate, ¢, = (4/3)vd % the compressible dissipation rate and
P the pressure-dilatation The last two terms represent the expliait
influence of the non-solenoidal nature of the fluctuating velocity field
in the hnetic energy budget The overbar over a vanable denotes a
conventional Reynolds average, while the overtilde denotes a Favre
average A single superscript ‘ represents fluctuations with respect to
the Reynolds average, while a double superscript ” signifies fluctua-
tions with respect to the Favre average

The quantitative contribution of the pressure-dilatation and comn-
pressible dissipation to the hinetic energy budget 1s shown in Fig 3
It can be seen from Fig 3 that these terms act as a dram on the hi-
netic energy, and can modify the the kinetic energy budget oy as much
as 25% The pressure-dilatation p'd (solid curve i Fig 8) is highly
oscillatory Though pd’ can be both positive or negative 1t tends Lo
be predomimantly negative

The  redomunantly negative values of p’d” i homogencous shear 1s
in contrast to the predotminantly positive values reported 1n Sarkar et
al (1989) tor the case of decaying 1sotropic turbulence. To understand
this contrasting behavior of /d’ we write the exact equation for the

pressure variance which 1s applicable to both these flows
d—5 I
al"’ =-2ppd - (2y - DWPd - 2 + &, 6

where ¢ 15 a term depending on mean viscosity and mean conductiv-
1ty which 1s neghgible compared to ¢, Here ¢, = (v — 1)RE ﬁT’ T’
and can be called the pressure dissipation term by virtue of bcmg a
sink on the rhs of Eq (6) Comparing Eq (5) and Eq (6) 1t 15 clear
that p'd acts to transfer energy between the kinetic energy of turbu-
lence 5K and the potential energy of the turbulence ;.7’7/(27;'7). In the
case of homogeneous shear the rms values of the veloaty and pressure
increase with time Now, the third term on the rhs of Eq (6) 1s always
negative and therefore a sink for the pressure vartance For small p’/p
we can neglect the second term on the ths of Eq (6) with respect to
the first term. Therefore for ' to mncrease with time, a soutce term
18 necessary which implies that d be negative 1n accord with the
DNS results We note that a sumilar analysis of the equations for P
and 7"? indicates that 7d and T'd’ also have to be predominantly
negative in this flow _

In decaying 1sotropic turbulence p* must decay with tune, however,
because ¢, 1s sufficient to ensure decay of ;77 the sign of pd’ cannot be
determined from Eq (6) Alternatively, we consider the exact density
vanance equation which for homogeneous shear flow is

d=~3 — —
5//2 = =2ppd - o d M

For small p//p, the first term on the rhs of Eq. (6) dominates the

secoind tetin Thetefore for g2 (o decrense with time 14 18 necessary
that P/d’ be predomm.mtly positive. It we assume that the thermo-
dynamic fluctuations are approximately 1sentropic in this case (DNS
supports this assumption), it immediately follows that 7d" 1s also pre-
domunantly positive in decaying isotropic turbulence. Thus, the role
of Pd’ as a mechanism for energy transfer between the kinetic energy
and potential energy dictates its differing signs in homogeneous shear
and unforced 1sotropic turbulence.

The earlier wotk of Sarkar et al. (1989) had shown that. in 1sotropic
turbulence, the ratio F of kmetic energy and potential energy of
the compressible component = 1, which implies a tendency toward

DO

equipartition between the kinetic and potential energues of the fluctu-
atg compressible mode. DNS of homogeneous shear shows that the
partition factor F approaches and oscillates around an equilibrium
value of approximately 0 95 indicating that approximate equipart-
tion in the cnergies associated with the compressible mode holds 1n
the case of homogeneous shear too
3.2. COMPRESSIBLE AND SOLENOIDAL SPECTRA

The Fourier component of the veloaity is decomposed nto com-
ponents perpendicular and parallel to the wave number vector from
which the solenoidal spectrum E, (k) and compressible spectrum E.(k)
are calculated Fig 4 compares the solenoidal and compressible spec-
tra at St=7 (when M, = 0 43) for Case 3 The slopes of the compress-
ible and incompressible spectra are similar for the intermediate wave
numbers 10 < k < 48 The solenorfal spectrum at St = 7 1s com-
pared in Fig § between Case 1 which is an ncompressible run and a
comipressible run (Case 3) Case 3 has itial M; = 0.3 and the mitial
velocity and pressure fields are the same as in Case 1. From Fig 5 ¢
appears that the shape of the solenoidal spectrum in Case 3 15 not al-
tered tn the intermediate wave number range from the mcompressible
case, even though the compressible fluctuations are non-neghgble -
pems/F = 012 and x4 = Kc/K = 0.05 However, the pressure spec-
teum in Fig, 6 shows significant differences between Cases 1and 3 In
the compressible case, the pressure spectrum seems to be relatively
flatter than in the mcompressible case.
4. MODELING THE DILATATIONAL TERMS

We showed n Fig 3 that the compressible dissipation ¢ and the
pressure-dilatxtion p'd contribute sigmficantly to the kinetic energy
budget and ‘nerefore require modeling. In Sarkar et al (1991) we
proposed a model for the compressible dissipation €, = aje, M7 based
on an asymptotic analysis and DNS of isotropic turbulence. Fig 7
shows that, after starting from a variety of initial conditions, €, ~
0.5¢, M, suggesting that a; =0 5

Our direct numerical simulations of 1sotropic turbulence and homo-
geneous shear flow provided a data base for the pressure-dilatation and
suggested a theoretical approach towards modeling it The evolution
of the pressute dilatation P'd’ for case 3 13 depicted by the solid curve
it Fig 8 From numerical expeniments, 1t was found that the nominal
time period of the oscillations in P/d’ decreased approximately linearly
with the speed of sound This suggested that one could isolate the

oscillatory part of p’d” by decomposing the fluctuating pressure p’ mto
the sum of an incompressible part pf " and a compressible part p¢
The component p' 15 associated with the incompresstble veloaty field
u! which 1s divergence-free (V u/ = 0) and satisfies the usual Poisson
equation

Vi = 2yl — Pt ®

and the remamnder p' — p!" 15 the compressible pressure pcl Since
pl = pI' + pC'

we have o

p-l—d! =pl'd +pd
Fig. 8 shows the evolution of pC'd’ and pT'd for Case 3. The os-
allations are substantial only W, and furthermore, the peaks
and valleys n the evolution of p©’d’ in Flg 8 seem to be much more
symmetric around the eng than those in p’d’ In order to gauge
the relative importance of the two components pc d’ and p’ d’ of the
pressure-dilatation in the evolution of the turbulent kinetic energy,
we calculate the time integrals of these components. The integrated
contribution of p/'d’ 1s about an order of magnitude larger than that
of p¢d' in Case 3 Examination of other DNS cases indicates that,
in general, p€'d' has a negligible contribution to the turbulent kinetic
energy evolution relative to p!'d’. Therefore, it seems that only the
component p!'d’ of the pressure-dilatation requires modeling in shear
flows .

In order to niodel p!’d’, we consider the Poisson equation Eq (8) for
the mcompressnble pressure After splitting the pressure nto a rapid
part o’ and a slow part s %', we obtain the following exact expressions
for the rapid pressure-dilatation and slow presure-dilatation

pd = mn/ kmky E'Cdk {9)

T = ./——Jh0um,u$ i aC)dk  (10)

Here ¢° denotes the complex conjugate of the Fourier transform é
and E1C tepresents the spectrum of the mixed Reynolds stress tensor

wl'uf"  Using scaling arguments (see Sarkar (1991) for details) to
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simphfy Egs ($)-(10) we find that p®'d’ depends on the production
P winle p5’d’ depends on the dissipation €. Finally, we propose the
following model for the pressure-dilatation:

Pd = —a;FPM] + agpe, M? (1)
where P = -6._,11?743’ 1s the production of hinetic cnergy, M, =

\/ 21\'/7RT~" the turbulent Mach number and ¢, the solenoidal dissipa-
tion Because the production P = 0 in decaying 1sotropic turbulence,
the vanation of the mcompressible pressure-dilatation with ¢, can be
verified using DNS of 1sotropic turbulence The ratio p!'d’/(pe, M?)
1s shown as a function of non dimenstonal time in Fig9 This ratio
reaches an equilibrium value by a time of 0 25, substantiating the va-
lidity of the second term in Eq (11) Based on the DNS value of
the equilibrium ratio, the model coefficient ag 1n Bq. (11) 1s taken to
be 02 The remainng part of the model for the pressure-dilatation
1s calibrated against stmulations of homogeneous shear flow Fig 10
shows that, in accord with our model, the rapid part of the pressure-
dilatation scales as FPM?  The ratio (p/'d’ — 0.2¢,M?)/(FPME)
reaches an approximate equilibrium value of —0.4, suggesting that
the model coeffictent n, = 0 4
5. STRUCTURE OF THE RATE OF STRAIN TENSOR
In this section, we study the structure of the rate of strain tensor S5,
i compressible homogeneous flow Because the flow 1s antsotropic, 1t
1s important to consider charactenstics of the flow with respect to all
three coordinate directions The most fundamental quantity for such a
study 1s the tensor u, , which 1s the sum of the svmmetric rate of strain
tensor Sy, = 05(uy, + u,,) and the antisymmetric rotation tensor
4, = 05(t,, — uy,) The latter tensor describes the wstantancous
rotatien of individual luid clements, while the former tensor describes
the straining of these elements This study 1s motivated by observed
differences in the streak patterns of the irrotational and the solenodal
components of the velocity vector (u’ and uf) These differences were
brought out by plotting the magmtude of «& and u! i the z -y,
r—: and y -z planes, and noting sotne strong qualitative differences
between the solenoidal and irrotational parts  These differences can
be characterized by considering separately the rate of stram tensors
Sf; and S,’J‘ respectively based on uS and u!  The properties of
these tensors are best put forth by consideting the statistics of the
eigenvalues and cigenvectors
Let Ay < Xp < Az be the three eigenvalues of the rate of stramn ten-
sor (A superscript I or C on any quantity refers to quantities based
on etther the solenoidal or the irrotational component of the veloaity
vector)  Assocrated with these eigenvalues, let f; the eigenvector of
S,; associated with A, Some immediate properties of the eigenvalues
are

3
Z,\! =0
=1

l\:}l
'::\l

After the egenvectors are normalized to unity, we compute the angle
0,; between eigenvector f; and the umt vector w0 coordinate direction
3 Pdf’s of [¢cos §,,] over a subset of the flow field then provide informa-
tion on structural differences in the flow as they relate to deformation
of matenial lines and surfaces for both the solenoidal and dilatational
components of the flow The cosine of 8 1s chosen mstead of # so that
the probability density functions (pdfs) of a Gaussian ficld are flat
‘The sampling 15 done on a gnd resolution of 48 x 48 x 12 although
the simulation was performed on a 96% mesh Ja~grdness in the hs-
togram plots are directly related to an insufficient number of sample
ponts We performed spot checks of our pdfs at a higher samphing of
96 x 96 x 24 and observed only the expected smoothing of the curves,
but no qualtative change

We consider results from one sunulation with imtial parameters
S = 10, Re = 125, M, = 04, constant density, divergence free ve-
loaity, and pressure calculated from the usual Poisson equation for
incompressible flow  The data was analyzed at St = 1,3,5,7,9,11,
and plotted using a vanety of data reduction techniques Only the
most relevant plots are shown here. A more extensive discussion of
this analyss 1s available in Erlebacher, Sarkar and Hussaim (1991)

The peak of the pdf of a stochastic vanable occurs at a value of
the vanable which we call the most probable vanable Time histo-
ries of the most probable A and AC, 1 = 1,2,3 are shown in Figs

11 and 12 respectivelyr As expected, the most probable values A,
are significantly larger for the solenoidal component, consistent with
@? >> d? The most probable solenordal eigenvalues remain approxi-
mately constant m time, where~< the maximumirrotational eigenvalue
increases tn time. This mdicates that, on average, the lengthening of
flud elements due to the irrotational stram field increases with time.
Although the most probable A 1s approximately constant n time,
its mintmum (taken over the 3-D field) decreases (Fig 13). Conse-
quently, the effect of regions with large compresston mtenstfies with
time This effect will be studied further with the use of conditional
probability density functions In Fig. 14, we plot the pdf of cos 64, at
St =1,3,5,7,9and 11 The structure of the curve remains almost in-
vanant in time We {'nd that this is true for all 0,’,, except for 8. By
comparison with stmilar plots obtained from DNS of incompressible
homogencous shear flow, we find that compressibility has only very
subtle effects on the spatial structure of the solenoidal rate of strain
tensor Only the most probable mclinations of the eigenvectors with
the spanwise direction seem affected by compressibility Further con-
clusions await a more detailed analysis. Finally, the last two figures
ilustrate some of the structural differences found in the solenoidal
and irrotational components of S,,. Fig 15 shows the pdf’s of cos 8,
while cos 65, 1s plotted i Fig  16. These correspond to St = 11
One sees from Fig 15 that, for the solenoidal field, the eigenvector
f3 has no preferred oricntation with respect to the spanwise direction.
However, this vector has approximately a 45 degree onientation with
respect to the x and y directions. We note that this eigenvalue (A3)
1s positive and corresponds to an expansion of fluid elements o the
corresponding principal axis direction  Figure 16 on the other hand
show a completely different character of SS Its interpretation 18 not
yet clear However, the charactenstics of Fig. 16 are found 1n many
of our shear flow sumulations
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Figure 1| Schematic of homogeneous shear flow
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ABSTRACT

Compressible homogeneous turbulence subjected to iso-
tropic mean compression is simulated numerically for high
and low turbulent Mach numbers, at various compression
rates. We find that at low Mach numbers, the effects of
viscosity variations on the development of the turbulent ki-
netic energy can be significant. A model consistent with the
invariance of the Navier-Stokes equations to spherical com-
pression, that takes into account variable viscosity effects is
proposed. At high Mach numbers, the distribution of en-
ergy between the acoustic and solenoid fields is found to
depend upon initial conditions. The simulation results are
also used to evaluate two-equation compressible turbulence
models

INTRODUCTION

One of the most pressing needs 1n the field of turbulence
modeling today is that of currectly incornorating the effects
of compressibility into one-point closures. Because of un-
certainties in compressible turbulence models, the abihty
to adequately predict flows such as those associated with
internal combustion engines, hypersonic flight, supersonic
combustion and astrophysics is currently rather limited
The goal of this study is to increase our understanding of
compressible turbulence by considering the simple limiting
case of homogeneous compressible turbulence subjected to
isotropic (“spherical”) mean compression. Our main ob-
jective 1s to gencrate direct numerical simulations (DNS) of
the spherically-compressed case, for various turbulent Mach
numbers and compression rates, and use the results to mod-
ify turbulence models so that they correctly predict this
flow. By “tuning” the models in this manner, it is felt that
they will provide better predictions for all flows.

FLOW DESCRIPTION

The fluid 15 assumed to be a viscous, compressible ideal
gas with constant specific heats. The mean straining is
given by the isotropic compresston

it,,5(t) = S(t)y,), (1)

where the mean dilatation, %, , = 3S(t), is negative, and &,
is the Favre averaged mean velocity. In what follows, Favre
averaged quantities arc denoted by a tilde, and ensemble
averaged variables by angle brackets Single and double
primes represent respectively, deviations from the Favre and
ensemble average: eg. u, = i, + u} = (u,) + uj. The list of
parameters which govern the flov- includes: (1) the initial
compression rate, defined here , (S¢%/€)o (a zero subscript
is used throughout to denote an initia! value), where ¢? is
{puul}/(p), twice the turbulent kinetic energy per unit
mass, and € = ¢, + ¢4 is the total rate of turbulent kinetic

energy dissipation due to both solenoidal and dilatational
velocity fluctuations: €, = F(wiw!) and e = $5(u; u) )
(¥ = i/ {p), w! is the fluctuation verticity and y and v are
the dynamic and kinematic viscosity, respectively); (2) the
compression history, S(t); (3) the initial turbulent Reynolds
number, {Rer)o = (¢*/€¥)o; (4) the initial turbulent Mach
number (M1)o = (¢/%)o, where € is the sound speed based
on the mean temperature, T (5) the molecular Prandtl
number, Pr; (6) the ratio of specific heats, v; (7) the tem-
perature dependence of the dynamic viscosity, u(T); (8)
the initia]l magnitude and spectra shapes of the density and
temperature fields; and (9) the initial partitioning of turbu-
lent kinetic energy between the solenoidal and dilatational
fields, and the respective initial spectra shapes.

The DNS code of Blaisdell, Mansour & Reynolds (1991)
(henceforth BMR) is used to produce the results. The
program computes numerical solutions of the compressible
Navier Stokes equations, for various types of mean defor-
mation. All the relevant scales of motion ate 1esolved (so
that no turbulence model is required), by utilizirg a Fourter
spatial discretization and Runge-Kutta time advance algo-
rithm

We assume

W(T) = u(Th) (%) . 2

)
and i = u(f) The viscosity exponent, n, 1s taken to be
either 0.67, 0.75 or (for reasons discussed below) 1/(y —
1). To maintain the homogeneity of the turbulence, the
compression history must follow (BMR)

5(t) = So/ (1+ Sot). (3]

The other parameters used for each run are given in the
appendix, as are details regarding generation of the mitial
conditions.

Two-equation model

For isotropic turbulence under spherical compression, the
off-diagonal Reynolds stresses are negligible. We therefore
choose to focus our attention upon two-equation models. A
form appropriate for compressible flow is (BMR, Speziale &
Sarkar 1991, Reynolds 1980)

1 ~ 1
50t T30 =P+ D — (W +Tha -, ~ea, ]

€01 Hilyey, = gg(zc,p —2C2¢,)+3(1 = C3) €,5+D,, [5)
where P = -u/:Tz-;"ﬂ.,, is the production of ¢?/2, D, and
D,, prepresent turbulent and viscous diffusion and Iy =
{p'w,}/{p) is the pressure-dilatation term. The ¢* trans-
port equation is exact (except for the fact that terms in-
volving correlations of fluctuating viscosity ~ which have
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been found to be neghgible by BMR - have been omitted),
while the transport equation for ¢, is a model. Cy, Cy and
C; are modeling constants; popular values are Cy = 1.44,
C; = 1.83 and C; = (7 - 2C})/3 (Speziale & Sarkar 1991).
P is modeled using an eddy viscosity approach, so that P =
0.5Cu(q*/€s)(51; 815 = 35%) — ¢*S with §,; = (¥, + §,,)
and C, = 0.09 (Patel et al. 1985) Given parameterizations
for the two compressibility terms, II4 and €4, the equation
set is closed.

Applied to the special case of isotropic compression, Eqs.
[4] and (5] reduce to

dg?/2

L2 pem et I, g
dey, € €
_(F —C{PEQ—/—2+3(1—C:;)E,\ sz [7]

with P = —¢2S. Our objective is to use DNS results to test
some proposed closures for Iy and €4, and to evaluate the
constants in (and form of) the ¢, equation We begin with
the later task, by considering the flow in which the velocity
fluctuations are small compared to the local sound speed.

LOW MACH NUMBER CASES

When the tarbulent Mach number, M, is very small, the
fluctuation velocity field is effectively solenoidal, implymg
that g and Il are both neghgible The low Mach number
DNS results presented 1n this section are thus primanly use-
ful as a means for evaluating the €, equation. We first turn
our attention to compressions at very rapid rates, since this
allows us to compare Eq [7] and DNS results with rapid dis-
tortion theory (RDT) (see also Coleman & Mansour 1991)

Rapid Spherical Compression

Dissipation histories from two low Mach number rapid
compression runs, with (S¢%/¢)y = —47, are given in Fig 1
The time span shown represents half of the total available,
since at [Solt = 1 the volume collapses to zero (see Eq [3])
The first of the DNS data (shown by the symbols), 1s Wu
et al ’s(1985) Case SQF, which assumed the fluctuating ve-
locity was divergence free, so that My was exactly zero.
Very good agreement 1s found between Wu's data and the
present simulation results (run c3dh, dotted curve), which
uses (A7) = 0.04 (she other run paremeters are given
in the appendix). Also shown in Fig 1. as the dashed
curve, is the model Eq {7} prediction, using C; = 1 92 and
Cs = (7 - 2C,)/3, the standard value quoted above. The
large difference between the model and the DNS histories
is at first glance puzzling, since this valuc of C3 was advo-
cated by Reynolds (1980) and Morel & Mansour (1982) as
a means of exactly matching rapid 1sotropic compression.
However, in setting the value for Cy, Reynolds and Morel
& Mansour were matching RDT for constant kinematic vis-
cosity. Coleman & Mansour (1991) have shown that the
effect of variable viscosity is important, and

CJ=(7—:"-’—~11—”—20.)/3 8
U, dt

will reproduce the RDT and DNS results. In Fig. 1, pre-
dictions using Eq.[8] are shown as the chain-dot and solid
curves, for C; equal to 1.92 and 0, respectively; very good
agreement with the sirnulation data is observed.

Intermediate and Slow Spherical Compresstons

While the correct treatment of terms dominant during a
rapid compression is apt to improve the overall behavior

€./ (€ )0

i I A i 1 i i 2 I}

0
000 005 0.0 015 020 025 030 035 040 045 050

[Solt

FIGURE 1. Evolution of the solenoidal part of € during a
rapid spherical compression, (qu/e)0 = —47 and Mp ~ 0;
A, Wu et ¢l.’31985 DNS Case SQF, Mp = 0; «--ree , present
DNS run ¢3dh, (M7)o = 0 04; ----, Eq. [7) prediction using
C3 =(7-2C1)/3, C; = 1.92; —.—, Eq. [7] prediction using
Eq. (8] for C3, with C2 = 1.92; ——, Eq. [7] prediction using
Eq. (8] for C3, with C; = 0.

of the ¢, equation, it provides no guarantee of an accurate
prediction for flows experiencing compression at low or in-
termediate rates. The mean production term 1s faithfully
represented in the ¢, equation when Eq. (8] is used for Cj,
but the manner in which Eq [7] models the terms which are
important away from the rapid compression regime, namely
the vortex-stretching and destruction terms, are crucial in
more general situations This is the subject of the present
section.

The key to modeling a1bitrary 1sotropic compressions is
found in a conclusion attributed to Spiegel & Frisch in a
recent paper by Cambon, Mao & Jeandel (1991): that the
form of the Navier-Stokes equations is unchanged by the
transformation which maps a decaying isotropic flow to one
experiencing spherical compression, provided M = 0 and
the variations of kinematic viscosity are the same for the de-
caying and compressing flows. This result is demonstrated
by the DNS data shown in Fig. 2. The solid and dashed
curves trace ¢ histories of an intermediate compression,
(5¢*/€)o = —2.5, for cases with constant (run c3dq) and
variable viscosity (c3dl), respectively. The later uses in
Eq. 2] the exponent n = 3/4, and the former n = 1/(y-1).
Setting n = 1/(y — 1) leads to (since for the mean flow
the isentropic relations are a very good approximation),
dv/dt = 0. The dotted curve in Fig. 2 is the result of map-
ping the isotropic decay evolution (run ixxb), which began
from the same state as the compression runs, according to
the Spiegel-Frisch transformation:

_ (fo)\™
Usy(Xayty) = (m) u,(x, 1)

1) 2/3”
=) <<p(0)>) t

where the “starred” quantities represent the unmapped iso-
tropic decay variables, and the “unstarred” those of the
mapped spherically-compressed flow. The fact that the solid
and dotted curves correspond shows the density fluctuations
are negligible for these runs, while the divergence of the
dashed and dotted curves points to the importance of the
viscosities exhibiting the same behavior, for the transforma-
tion to be exact.

The Spiegel-Frisch result implies that to accurately model
an isotropic compression of any rate, one need only obtain

(9l
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FiGURE 2. Evolution of turbulent kinetic energy for in-
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an accurate model of isotropic decay with time-varying vis-
cosity. We first consider the U = constant case, so that

de,/dt = Udo? /dt (whete w = \/{wjw))). Eq (7] predicts

de €
-2 = 9C,-L. 10
dt qu (10]

To determine C3, we appeal to the recent direct simula-
tions of incompressible isotropic decay of Wray & Man-
sour (1991). Fig. 3 shows the development of Cp with
Rey, = (5Rer/3)'/? predicted by the simulations, and the
models of Hanjali¢ & Launder (1976) and Lumley (1978)
The Lumley model consistently underpredicts the DNS data
for the range of Rey shown, while the Hanjali¢ & Launder
curve reaches the Ingh Rey himit too quickly. Although the
models and data all appear to agree on the very small Rey
limit of C; ~ 1.4, the behavior as Rey — 0 is very differ-
ent. no evidence of the dCy/dRex = 0 vatiation assumed
by both models is found in the low Rex simulation results.
Modeling C; by a curve fit of the DNS data, we have

Cz = ~0.4exp(~0 13Rey) + 1.8, (11}

which produces the dotted curve shown in Fig. 3
Using Eq. [9), the Spiegel-Frisch transformation, Eq. {10]
maps to the ¥ = constant isotropic compression model,

de, €
-2 = - -2, 2
dat 456, 202112 [1 ]

This result was first found by Cambon et al. (1991), who
only consider the constant viscosity case. It is identical
to the result one obtains by applying Eq. [7] directly to
spherical compressions when using Eq. [8] with dv/dt =
0, and 1s therefore consistent with Reynolds’ and Morel &
Marsour’s ¥ = constant RDT work.

As we have seen, via Fig. 2, even at intermediate com-
pression rates the variation of ¥ is important during the
compression. Therefore, in order to account for the usual
situation in which dv//dt # 0, and fully take advantage of
the Spiegel-Frisch transformation, a realistic model of vari-
able viscosity isotropic decay must be developed. In an at-
tempt to do so, we consider the transport equation for the
enstrophy, w?, and assume that the imbalance between the
vortex stretching and viscous destruction terms induced by
variations of ' is governed by the parameter (1/¢%)dv/dt.

lz A L N ke A
0 5 10 15 20 25 30
Re,\

FIGURE 3. Variation of C; with Rey; Open symbols, 1283
DNS; Solid symbols, 256° DNS (Wray & Mansour 1991);
——, Hanjalié¢ & Launder (1976); ----, Lumley (1978);
-« Equ [11]_

Since in general, de,/dt = vdw?/dt +w?di/dt, this leads to
the following model for vaiiable-v isotropic decay:

de, o d e 1dv
W_w -d—t-—?Cz‘(;E— 2,‘q‘2‘gt'5.sw [13]

Provided Eq [13] is valid, the Eq. [9] mapping implies that
a low Mach number spherical compression of any rate would
then be desenibed by

de, 2 dv
T TSty )
é T A
—2027—0&, T 6,—2-——
q {n(0)) g dt

The first twe, terms on the RHS of Eq. {14] follow from the
vanable viscosity RDT findings of the previous section; C7 1s
modeled by Eq. [11]. We are now in the process of evaluating
the C,, term by DNS of variable viscosity isotropic decay.

HI'5H MACH NUMBER CASES

Up to this point, our discussions have dealt with “com-
pressing” flows, those in which compressibility affects only
the mean density. There are many situations, however,
where density fluctuations are important. In this section,
we address the issues related to these flows, 1n which M7 is
not small.

“Synthetsc” Initsal Conditions

The first issue we consider is the effect of isotropic com-
pression on the acoustic variables. During their study of
compressible homogeneous shear flow, BMR found that the
mean shear drives the acoustic (dilatational) field to a un-
ique state, regardless of the magnitude of initial conditions
— even when no development time was allowed for the turbu-
lence to mature before the shear was imposed Two parallel
runs, c3dr and c3ds, with identicel initial Mach numbers
(M7 = 03) and compression rates {{Sg?/c)y = ~2.5), but
different acoustic initial conditions, were performed to see if
spherically-compressed turbulence is simslar in this regard.
One run, c3dr, began with no initial dilatational velocity
or fluctuation density, temperature or pressure; the other,
c3ds, began with one-fourth of the turbulent kinetic en-
ergy in the dilatational component, and fluctuation density
and absolute temperature ficlds both equal to 15 percent
of their volume averaged means (with the pressure given by
the ideal gas law). All non-zero fields for both runs assumed
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FIGURE 4. Historics of () turbulent Mach number and

{b) ratio of ailatational to solenoidal dissipation; (S¢%/e)o =
—2.5 and (Mr)y = 03, . ¢3dr, acoustic fields umn-
tlally Zero, ===, c3ds, (qgll/q;zoml)o = 1/4, (prms/(p))o =
(Trme/(T))o = 0.15.

“top-hat” initial spectra (BMR), and the compression be
gan immediately upon the “synthetic” undeveloped fields
(see appendix for other run parameters)

The Mach number histories for the patallel runs are given
in Fig 4a, and are very similar to each other However,
the variations of t' dilatational dissipation (Fig. 4b) and
pressure-dilatation correlation (not shown) are quite dis-
tinct. Since the histories have progressed, without converg-
ing, to over half of the total possible compiession tune,
0 < |Solt < 1 (sec Eq [3]), it appears that unlike shear,
spherical compression does not drive the acoustic field to
a unique state This behavior is a result of the fact that
the only coupling between the solenoidal and acoustic fields
is due to nonlinear interactions, which are slow compared
to the turbulence time scale at this Reynolds number 1t
implies that €4 and IIg mod Is must account for initial con-
ditions if they are to work correctly during 1sotropic com-
pression. The degree to which one II; model succeeds is
taken up in the next section, as part of a discussion of high
My data which are generated using for initial conditions ~
rather than the synthetic fields of this section - developed
1sotropic decaying turbulence.

“Natural” Initial Conditions

As with the spherically-compressed flow, acoustic vari-
ables in decaying isotropic turbulence do not converge to
unique values which are independent of their initial condi-
tions (cf. BMR). Because of this, a certain amount of arbi-
trariness exists in specifying “natural” initial conditions for
the high Mach number simulations. Tor the present com-
putations, the initial acoustic field is the result of begin-
ning with a purely solenoidal field, allowing it to decay and

develop dilatational fluctuations, before the comoression is
imposed, at the point where My = 0.44, p, = 0.03(p),
Tims = 0.02(T) and 9 percent of the turbulent kinetic en-
ergy is in the dilatational field. Three separate compres-
sion speeds were chosen, defining three cases, runs c3db
((S¢*/€)o = —47), ¢3dc (—12.5) and ¢3dd (-1.25).

The initial field was not in exact acoustic equilibrium,
sincz the dilatational energy was not evenly split into the
kinetic and potential energy partitions The ratio of the two
is defined by the parameter, F = v{¢c){p)g3,/{p.pL); where
pe is the so-called “compressible pressure” (Sarkar et al
1989). Both high and low M7 isotropic decay simulations
have shown that after an initial transient, well developed
compressible turbulence reaches acoustic equilibrium, char-
acterized by F = 1 (Sarkar et al 1989, Lee et al. 1991,
BMR). Instead of being about one, the initial condition
used here saw F = 0.6. (During the determination of F,
we found that for this flow, the compressible pressure fluc-
tuations (p,p;) accounted for approximately 80 percent of
the total fluctuations, (p'p’) ) We intend to repeat these
high M7 cases using F 2 1 initial conditions, so that the
effect of spherical compression upon the partitioning of the
acoustic energy may be determined.

From the present runs we are able to observe that the
compression rate strongly affects the evolution of the Mach
number, the dilatational dissipation and the pressure-dila-
tation correlation (Fig. 5). In particular, we note in Fig 5b
that for the iitial condition used, the level of €4 is very
small, never more than 4 percent of the total dissipation.
One of the predictions of RDT 1s that eg/e, will remain
constant during a 1apid spherical compression (Coleman et
al. 1991); the DNS results support this finding, since the
rate of change of ¢4/¢, decreases as the compression rate
Increases.

From a modeling standpoint, the most significant result
is the behavior of pressure-dilatation term shown in Fig. 5c.
The magnitude of II4 is seen to be a significant fraction of
the total dissipation, and demonstrates a great dependence
on comptession rate Beginmng from the imtial condition
level, where the pressure-dilatation in the unstrained field
acts as a source of turbulent kinctic energy (supplied by
the potential energy of the pressure ficld), the compression
in all cases causes a reduction of II;. At the slow rate, it
approaches zero and remains shghtly positive, when |S] is
large however, the pressure-dilatation is driven to very large
negative values, with magnitude maay times that of the to-
tal dissipation rate (see Fig. 6a), representing an important
kinetic to potential energy conversion. In Fig. 6, we test
the ability of Aupoix et al’s(1990) II; model to duplicate
the DNS histoties for the largest and smallest compresston
rates (note the expanded vertical and horizontal scales in
Fig. 6a). The model assumes

d{p)ll4
dt

AL} dqg?
214 dt

==-Cuip) = Caz Sﬁndv (15)
TA
where 74 = (1/2)*/%(¢% /)My, C a1 = 0.25 and C a2 = 0 20.
While the trend for the (Sq%/¢)s = —1 23 case is roughly
correct (Fig 6b), that for the rapid compression (Fig. 6a) is
not. Given that the slow compression performance is about
as good as that found for isotropic decay (see Figure 5 of
Aupoix et al. 1990), and the poor response for large |5]
found here, it scems as if the major deficiency of the model
is the strain rate sensitivity - although part of the poor
showing could be due to the fact that it has been tested
against a flow in acoustic nonequilibrium. This 1ssue will
be clarified in the future. Aupoix et al. have acknowledged
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FIGURE 5.  Evolution of (8) turbulent Mach number,
(b) ratio of dilatational to solenoidal dissipation, and (¢)
pressure-dilatation, (Mr)o = 0.44, , ¢3db, (Sg%/¢)o =
~47; -===, c3dc, (S¢*/e)s = -12.5; -+, c3dd, (5¢*/€)o =
-1.25

the model’s weakness for flows with strong initial condition
dependence and have tentatively proposed model transport
equations for both Iz and ¢, which might alleviate some
of the shortcomings cbserved here.

Zeman (1991) has recently proposed an algebraic model
for T4, which he uses to predict some of our DNS results
(as discussed in these proceedings). While we cannot ex-
pect an algebraic modcl to do well in an initial condition
dependent flow when compared directly to the pressure-
dilatation histories, Zeman has found some success when
it is one component of a set of modeling equations. It is
also possible that when the Aupoix proposal is combined
with other model equations, the overal) performance might
be better than implied by the above test.
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FIGURE 6.  Pressure-dilatation histonies, (Mr)o = 0 44;
(e) Run c3db, (Sq*/e)o = —47; (b) Run c3db, (S¢?/¢)o =
~1.25. ——, DNS, ---~, Aupoix et al (1990) Eq. [15].

CONCLUSIONS

The DNS data imply that for compressible turbulence
models to correctly predict isotropic compression, the varia-
tion of kinematic viscosity induced by the compression must
be accounted for For a rapad spherical compression, this
may be done by using Eq. {8] for (3, wiuch implies that
this model “constant” is a function of the bulk compression
At non-rapid compression rates, Eq. [14] 1s proposed, but
further testing is needed. For constant-¥ isotropic decay, a
new model for C7, Eq. [11], has been constructed. The high
M7 flows have been found to exhibit a strong dependence
on acoustic initial conditions, which implies that models for
¢g and [I4 which are sensitive to initial conditions are apt
to be the most successful.
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APPENDIX

All the DNS runs reported herein use 96% grid points, and
choose Pr = 0.7 and v = 1.4 as fixed parameters; variable
parameters are listed in Tables 1 and 2. Table 2 gives the
acoustic initial conditions: the ratio of dilatational to total
turbulent kinetic energy, and the (rins to volume average)
density fluctuation and (absolute) temperature fluctuation
ratios. The compression rate, turbulent Reynolds and Mach
numbers, viscosity exponent (Eq. [2]} and type of initial
condition are given in Table 1. Two methods of generating
initial conditions are employed, one termed “synthetic,” the
other “natural.” The runs which use the “natural” approach
(those with ‘N’ entered in the IC column of Table 1), begin
with random, isotropic velocity, density and temperature
fields with prescribed analytic spectra (either “top-hat”’ or
“exponential” (Blaisdell et al. 1991)), and allow the tur-
bulence to decay without imposed strain to a mature state
(such that the velocity derivative skewness ~ 0.4), before
the compression is 1mposed upon the mature field charac-
terized by the Table 1 and 2 values In the two runs which
use “synthetic” initial conditions (denoted in Table 1 by an
‘S"), no development time is allowed before the compression
begins upon a field defined by the analytic spectra The last
three runs listed, ¢3dk, clda, and c¢1db, are not used in this
paper, but along with ¢3db, are discussed by Zeman (1991)
later 1n these proceedings For clda and cldb, the mean
compression is one-dimensional, i e. @, ,(t) = S(t)6,;6;,.

Table 1 Non-acoustic Run Parameters

Run  -(S¢*/e)o  (¢*/eP)o  (Mr)o n IC
c3dh 470 21 0.04 075 N
c3dl 25 52 003 0.75 N
c3dq 25 52 0.03 1/(y-1) N
ixxb 0 52 0.03 0.75 N
c3dr 25 200 0.30 0.67 S
c3ds 25 200 0.30 0.67 S
c3db 47.0 500 044 067 N
c3dc 125 500 0.44 067 N
c3dd 1.25 500 J.44 0.67 N
c3dk 47.0 21 002 0.67 N
clda 47.0 500 0.44 0.67 N
cldb 47.0 21 0.02 067 N

Table 2. Acoustic Run Parameters

Ran (qgnl/qfotal)ﬂ (Prms/(/’) Yo (Trms/(T) Yo
c3dh 0.00 0.00 000
c3dl 000 000 0.00
c3dq 0.00 0.00 0.00
ixxb 0.00 0.00 0.00
c3dr 0 0 0
c3ds 0.25 0.15 0.15
c3db 0.09 0.03 0.02
c3de 0.09 0.03 0.02
c3dd 0.09 0.03 0.02
c3dk 0.00 0.00 0.00
clda 0.09 0.03 0.02
cidb 0.00 0.00 0.00
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ABSTRACT

First. this paper reviews the physics and modeling of com-
pressibility effects in homogeneous decaying, and shear-driven
turbulence. Second. the principal subject 1s investigation of
the cffects of pressute and dilatational fields in turbulence sub-
jected to rapid spherical (3D), and one-directional (1D) com-
pressiue On the basis of the direct numerical simulation re-
sults of Coleman (1991), 1t is shown that in 1D rapid com-
pression the pressure-dilatation correlation (Fw;,;) 1s responsible
for unusually high energy transfer from the hinetic to pressure
modes. This transfer mechamism leads to considerable turbulent
hinetic energy losses even when turbulence 1s virtaally incom-
pressible A parametric model for o, is developed to capture
this amsotropic rapid effect, and the model results are compared
with the Coleman data The model 1s then tested aganst the
direct simulations of turbulence/normal shock interactions ( Lee,
1991) It is shown that apart from the energy transfer due to
74,;, another important mechanism within the shock 1s assoct-
ated with the acceleration term (containing the mean pressure
gradient).

INTRODUCTION

The measure of the compressibility effects on turbulence 1s
the so-called r.ms Mach number Af,, based on an r m.s. fluc-
tuating speed and the sonic speed corresponding to the back-
ground {mean) temperature. The soni¢ speed can be considered
as a new ntrinsic velocity scale which limits the propagation
of perturbations through the fluid and sets a limit, m a stats-
tical sense, on the velocity fluctuations as well. As the r.m.s.
Mach number increases, the velocity fluctuations are accompa-
nied by growing levels of density and pressure fluctuations and
a growing degree of coupling between the vortical and dilata-
tional (acoustic) fields. Utiizing Helmholtz” decomposition and
Favre averaging, one can identify two explicit terms in the tu,-
bulence energy equations which depend on the dilatational field
and provide the vortical/acoustic mode coupling. These arer 1)
the dilatation dissipation defired as €4 = 4/3p(u,,)? /5, and 2)
the pressure-dilatation correlation term Il = 54, /7

Zeman (1990) suggested that turbulence, at a sufficiently
large My, may gererate shock-like structures or shocklets, which
entail high levels of the dilatation dissipation e4. The existence
of turbulent shocklets has been recently confirmed 1n direct nu-
merical simulations (DNS) of decaying turbulence (Lee, Lele,
and Moin 1990) and in the DNS of shear-driven turbulence as
well (Blaisdell, 1990). In laboratory flows, the most prominent
effect of compressibility on turbulence is the inhibition of shear
layer growth rate with the (convective) Mach number M, as
observed in experiments of Papamoschou and Roshko (1988),
Samimy and Elliott (1989), and others. Zeman(1990) argued
that the growth rate inhibition 1s due to the (anomalous) di-
latatron dissipation caused by turbulent shocklets and, on the
basis of a stochastic shocklet model, inferred a parametric ex-
pression to quantify €4. Inclusion of this anomalous dissipation
in a second-order closure model provided the growth rate reduc-
tion in agreement with the experimental data.

The importance of the pressure-dilatation Iy for turbulence
energetics has, so far, not been fully appreciated As illustrated
in Zeman & Blaisdell (1990) and Zeman (1991), ITy mediates
the exchange between the kinetic and potential energies. The
potential energy is meant to be the energy associated with the
compression work; 1t 15 proportional to the pressure fluctuation
variance p?. In equilbrium flows such as self-preserving shear
layers and flat plate boundary layers, Il; appears to be neghgi-
ble. However, in unsteady turbulent flows controlled by nitial
conditions and in flows with rapid (mean) compression, the con-
tribu tion of Il4 in the turbulence energy budget can be signifi-
cant, and its knowledge is indispensable for computation of the
variances of pressure and der 1ty fluctuations (see also Zeman,
1991a)

In the following a brief review 1s presented of the current un-
cerstanding of compressibility effects in two generic (DNS) flows.
decaying and shear-dniven turbulence. The effects of mean rapid
compression on turbulence (with non-zero values of M,) are the
main subjects of this paper. The problems to be addressed are:
1) homogeneous three- and one-dimensional rapid compression
(hereafter abbreviations 3D, or iD are used) and 2) response of
shear-free turbulence to a passage through normal shock.

COMPRESSIBLE DECAYING, AND SHEAR-DRIVEN TUR-
BULENCE

The fundamental energy-governing equations 1n the Favre
average setting are

(’) 2
1/25 = Py = (e + ca ~ ),

Y

A R )

accompanied by the equation of state § = pRT, where tilde and
bar denote, respectively, Favre and Reynolds averages. Defined
previously, Il 1s the pressure-dilatation term, P, represents the
shear production of turbulence due to the (constant) mean shear
3, and ¢* = 4,4, is twice the Favre-averaged kinetic energy.
The separation of the total dissipation in the solenoidal (¢,),
and dilatational (e4) parts is feasible due to the Helmholtz’ de-
composition of the velocity field (Zeman, 1990) and is strictly
valid only in flows which are homogeneous in the mean. The def-
mition of the r.m.s. Mach number is M = g/a where the sonic
speed a is based on the mean temperature 1. In the absence
of compressibility effects (My << 1), the Reynoids siress ten-
sor components %, can be computed by means of a standard
turbulence closure model (for details see Zeman, 1991a). Here
we discuss merely the physics and modeling associated with the
compressible terms.

Dilatation dissipation: In ligh Reynolds number turbulence the
only significant source of dilatational dissipation ¢4 is due to
eddy shocklets. On the basis of a stochastic shocklet model,
Zeman (1990) inferred a parametric expression

€q x €, F(My, K). (2)
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The shocklet dussipation function F(M, K') 1s an integral func-
tional of a pdf p(im, I') of fluctuating Mach number m. The pa-
rameter I charactenizes a departure from Gaussianity of m and
has been defined as the hurtosis .e I = mi/(m?)?. From the
direct simulations of homogeneous turbulence, A" was estimated
as K = 4 (Zeman & Blaisdell 1990) and F'(M;,4) approximated
as

P(M) = 1 = exp{~((M, - 0 25)/ 80)*}
F(M)=0,1f M <025 3)

We note that eg 15 neghgible (wr.t. ¢,) when M; < 0.3. Phys-
ically, 1t means that shocklets cannot occur below a certain
threshold value of M; In the simulations of Lee et al (1991), the
shochlets were found only when M, exceeded values of about 0.3
In most of the computational examples presented in this paper,
¢4 is unimportant, the solenoidal dissipation €, 1s determined
from a standard modeling equation (sudependent of AM;).

Pressure-dilatation correlation: Zeman (1991) proposed that in
shocklet free decaying or shear-driven turbulence, the principal
balance in the pressure vanance equations is

DNofo—
t:S"I

{Q

—patlly (4)

and proposed a closure for g based on an heuristic argument
that in the absence of forcing, the pressure fluctuations will tend
to relax to an equibbrium vahie p.(3f,) at a rate dictated by
an acoustic time scale 7, « L/a 'This has led to the closure
equation

~ 5, Dp? 1_):’- -p? .
Ntal = = - e
211gp%a DI - (5)

The equilibrium variance p? was inferred from theory and DNS

data as X T
Pe o p M= e
o U A2 4 M,

(6)

with the acoustic time scale 7, = 0.2M,7. It 1s noted that
in these flows. the turbulence time scale is related to vortical
turbulence. 1e , 7 = ¢%/¢,

The DNS data of Blasdell (1990) confirmed that (1) is a
valid assumption for a range of r m:s. Mach number. 005 <
M, < 0.7 The model (5} accounts for the imitial condition influ-
ence on the (transient) behavior of turbulence. when the initial
pressure (ot density ) fluctuation level 1s much higher (or lower)
then the equilibrium value pe, potential energy p* 1s transferred
to (or extracted from) the hinetic mode. This energy exchange
takes place on the acoustic time scale 7,.

In the equlibrium regime of homogeneons shear turbulence
(St > 2), the model represented by Eqs (4)-(6) can be tested for
prediction of two quantities Il and of the (normalized) pressure
vaniance pt/p%. The pressure vanance as a function of Afy 1s
shown in Fig 1, where the cross-hatched area represents the
spread of DNS data reproduced from Blaisdell (1990) (plotted
only for t > 35~1), The values of p? are very close to, but always
smaller than, the equilibrium pressure variance (g2, M) (not
shown), the subtle difference between p? and pZ 1¢ according to
(5), responsible for the sign and magmtude of II;. Companson
of the relative quantity I14/c, is shown in Fig. 2. Both figures
support the model mechanism of relaxation to equilibriurn. We
note that saother viable model for 114 in shear turbulence has
been proyosed by Aupoix et al (1990). This model, however, is
not capable of dealing with the initial condition effects.

RAPID HOMOGENEOUS COMPRESSION: 3D VS 1D

Recently, Coleman (1990) performed direct simulations of
compressible turbulence subjected to rapid spherical (3D) and
1D compression for different initial values of the r.m.s. Mach
number My, = 0.02 and 0.44. These DNS experiments have
relevance to the flows of practical interest: the internal combus-
tion engine flow and turbulence/shock interactions taking place
e.g in a compression corner flow. The purpose of this section
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Fig. | Pressure variance dependence on r.m.s. Mach number
1n homogeneous shear turbulence: DNS-model comparison.
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Fig. 2. Evolution of the pressu.e dilatation normalized by total
dissipation; otherwise same as in Iig. 1.

is to rlucidate the physics of rapidly compressed turbulence and
describe the recent modeling effort in this zrea. Perhaps the
most important finding 1s that due to strong interactions be-
tween fluctuating pressure, dilatation {(u;,;), and vorticity i the
1D rapid compression, the pressure dilatation term Hy cannot
be discarded even for M << 1 Ths is contrary to the current
wisdom that turbulence under such conditions can be considered
mceompressible.

The 1mportant parameters of the flows in question are the
bl Mach niumber My, mittal timescale 7, = (¢%/¢,),, and
the imtial rate of compression A(t = 0) = A, Denoting the
mean velocity field by U, we define the spherical compression
by
Ups = U3 = Uy3 = V-U/3 = —~A(1), and 1) compression by
Uip = V.U = —A() The condition of spatial homogeneity

demands that
A,

A(l): 1—_/L,t, (7)

and the compression s considered rapid if A,7, >> 1.

In the Coleman simulations discussed here, A,7, = 47 and
therefore, in principle, a rapid theory could be utilized to deter-
mine the evolution of ¢? and, ii need be, p?. The 3D rapid com-
pression of incompressible isotropic turbulence (with My, << 1)
is a trivial problem of no interest to us except as a reference
flow. If, however. M., is sufficiently high to produce initial di
latation and pressure fluctuations, the rapid theory is more in-
volved. Here, we use the results of the modified rapid theory of
Sabel’nikov (1975) to determine a free constant in the rapid part
of the model for 114. The relevant set of equations to describe
rapid spherical compression of isotropic turbulence are

a¢* 1
1/2-(%- = -EQZV'U ~ (€5 + €g ~ Ig),
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ar =
e === DU T4 (6 + o = a5
19p7 —
5.29"7 = -9V Up? - 17 ll,. (8)

and the usual equation of state. Equations in (8) require a clo-
sure for 11, and for the total dissipation €; = ¢, + ¢;. There is
virtually no dilatation dissipation in this flow and therefore ¢4 15
neglected. The equation for the solenoidal dissipation €, requires
a special treatment because the molecuar viscosity varies dur-
g compression. We used the ¢, equation proposed by Coleman
& Mansour (1991) (in these proceedings) which yiclds a perfect
agreement with the DNS data

Rapid distortion theory suggests that the pressure dilatation
term I, have a rapid contnbution, hnear in p?V U. Hence, a
uew expression

i =
£ 4 eqp?V U 9

-t = _ D
pllarp = o

has been proposed to account for the rapid compression con-
tributton  The free constant ¢4 has been determuned from the
rapid theory as ¢q = (5—37)/12 (note that ¢4 == 0 for monatomic
gases. and 0065 i air). The details of the calculations leading
to the determination of ¢q are described in Sabel’nikov (1975)
and Zeman & Coleman (1991). We note that in analogy with
pressure-strain terms, we have in (9) the slow (relaxation) term
and the rapid (compression) term. Here, however, the rapid con-
dition requirement 1s |- U}r M, >> 1, or in terms of the initial
parameters

AoToMyp >> 1 (10)

This new rapid condition is pertinent to the dilatational field
and is stronger than the condition 4,7, >> 1 for the solenoidal
field

Finally, we note that during the rapid compression, the tur-
bulence lengthscale (L) and timescale (1) ro longer depend on
¢, and therefore a relation such as L « ¢*/¢, may not be ap-
propriate We can construct a lengthscale equation which vields
the rapid hmt satisfying L™p = const. and the equilibrium hmat
L — ¢*/¢s (when ¥.U — Q)

DI, 09 1

2= LS + -V U}, (1
where n 15 an integer denoting the dunension of compression
{or expansion) Eq. (11) 15 exactly vahd only for rapid sphen-
cal compression; 1n 1D compression (n=1), it approximates the
lengthscale variation in the direction of compression Now, in
prnciple, 7 1n the modeling equations should be proportional
to Lfg We found, however that L/q decreased too rapidly and
had undesirable effects on the model results We therefore used
in the following calculations a timescale based on the geometric
average: T = \/ql/¢,.

DNS computations of rapidly compressed turbulence (in 1D
and 3D) of Coleman (1991) for two initial Mach numbers M, =
002 (Case A) and 0.44 (Case B) are presented in Figs 3, 4, 5,
and 6 The initial field was a freely decaying turbulence with
equilibrium pressure (density) fluctuatiors dependent only on
My,. The initial, rapid parameter A,7, = 47 was the same for
both cases A and B. The 3D compression case is fairly siraight-
forward: the kinetic energy growth (Fig. 3) is virtually identical
for both cases A and B, and the pressure variance growths (in
Fig. 4) are nearly the same. The DNS data agree well (within
4% error) with the rapid compression limtt whereby the pressure
dilatation [ly is neglected (also ¢ = 0). According to (7) and
(8) this limit yields simple expressions:

2 -
CoPyup_ (3 wp P2_ 3
= Ly = (2o, Ba (2

o

which are independent of M; = My,. The evolution l14/¢; for 3D
compression only is shown in Fig. 5, the model-predicted values
of [14. Here, the best match with the DNS data was achieved
with the rapid part of the model in (9) discarded. It turned out
that the rapid part of (9) (with ¢g = 0.066) yrelded undesirable
(negative) contributions to Iy immediately at the onset of the
compression which 1s in disagreement with the DNS data.
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Fig. 3 Evolution of kinetic energy during rapid compression in
1D and 3D. Case A 1s for My, = 0.02; Case B is for M, = 0.44
DNS data of Coleman (1991)
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Fig 5 Evolution of the normalized pressure dilatation for 3D
rapid compression: DNS data and mode} results.

Our conclusion s that overall, the 3D rapid compression
of isotropic turbulence is a relatively simple modeling problem,
however, this is not so m the case of 1D compression. Inspection
of the Coleman DNS data in Figs 3 and 4 reveals some striking
differences between 3D} and 1D compression for the low Mach
number case A, This is most clearly evident in the DNS data
of p?. While the growth of pressure fluctuations agrees again
with the rapid theory for Case B, it 18 seen that in the low M,
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case A, the relative growth of »? 15 much more rapid. By the
time At = 0.5, the amplificatron of}ﬁ in Case A is by the order
0(100) larger then in Case B. This unexpected behavior can be
traced to the pressure-dilatation term shown for 1D compression
in Fig. 6 Contrary to expectation, Hy/¢; grows much faster in
Case A (with M,, = 0.02 << 1) than in Case B. This results in
an unusually high energy transfer from the kinetic to pressure-
fluctuation mode and thus to a significant loss of kinetic energy
to p?, despite turbulence being nearly incompressible. Thus also
explains the difference in the kinetic energy evolutions in 1D
compression as indicated by the DNS data in Fig. 3.

Attempting to model this phenomenon, we have found that
the 1sotropic compression model for Ila 1n Eq. (9) 1s entirely
iradequate since 1t does not distinguish between isotropic and
amsotropic (directional) compression. Inspecting the conserva-
tion equation for 7y ;. we identified a new important term which
appears to be responsible for strong dilatation/vorticity interac-
tions 1 anpotropic compression  From this term's form, the
following contribution to Iy was wmferred (sce Zeman & Cole-
man (1991) for details)

2

0 = —ea (S 12)
d = A]TM,')(I 1 (

where S, 1s the trace-free deformation tensor defined as 57, =
‘3(121 + Uy = %\' Ué,), ca is an adjustable constant, and
p' = (pI)/? Note that the contribuuon (12) 1s nonzero only
if the compression 15 atsotropie {for 11 compression (S,'J)2 =
%(V U)®) A prehmnary value of the free constant is ¢4 =
00004, It 1s of interest to note that an analogous term of the
form - z’U,“mz;}-’2 /P4(V'U)? has also been suggested by Taulbee
& VanOsdol (1991). However, in therr final expression, Taulbee
and VanOsdol retammed only the linear term in V.U, winch 15
stmilar to the rapid term i Eq (9) Similarly, Horstman (1987)
proposed a closure for Hy of the form -ET’qlv U where 3 is
the mean local Mach number (in a boundary layer)
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Fig. 6. Evolution of the normahzed pressure dilatation for 1D
rapid compression: DNS data and model results.

The DNS-model comparisons of the pressure dilatation and
pressure varance in 1D rapid compression are 1n Tigs. 6 and 7.
[t is seen that the model 1s capable of replicating the important
feature of 1D compression- the difference in the kinetic-to pres-
sure energy transfer and the resulting amplification rate of p?
between the low and high Mach number cases. It can be shown
that without the anisotropic rapid term (12), the predictions
for the low M, case A would be virtually 1dentical with Case
B, hence in gross error. The unique effect of anisotropic rapid
compression of nearly incompressible turbulence is also evident
in shock-produced compression of turbulence as shown in the
following section. In conclusion, in 1D rapid compression, the
quadratic contnbution (in V-U) in the pressure dilatation I, is
more important than the linear one, and it 1s expected to be so,
for example, in supersonic compression corner flows.
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Fig. 7. DNS-model comparison of the pressure-variance evolu-
tion for 11) compression with the anisotropic pressure dilatation
mor-le}

RESPONSE OF TURBULENCE TO A PASSAGE THROUGH
SHOCKS

Here, we present the results of model simulation and com-
panison with the DNS data of Lee (1991) of the response of
imtially 1sotropic turbulence to a normal shock. To simplify
the model computations, the mean shock flow is prescribed by
the Ranhine-Hugeniot relations. This 1s justified as long as the
rm.s velocities (u = \/q2/3) ate small compared to the jump
across the shock AU, typically for the present computations
u' /AU £ 01 The flow 1s inhomogeneous 1n and axisymmet-
ric about the direction £ = r normai ¢~ the shock, the mean
quantities Uy (z1). p(21), and P(zy) are hknown. The turbulence
equations to be soived are

D~ 2. . 2 1, -

—DTI = ~2uily, -—51),1“1 -1y, -E(Cs—ﬂd)—ﬁ(rm +25u7) 1
1 De? ~ 1_ _ 1., _—
5—1 = —?t;Ux,l _%1’.1 2 —((,—Ild)—52—/_:)_'(1”14-21)1&1),1 (13)

Here, the operator D/Dt = U,%, T,y = pu.ti;uy are the
nonzero third moments or fluxes mn the z; direction. II7, are
trace-free pressure-strain terms of the same form as i incom-
pressible turbulence, these contains the customary slow and
rapid terms, where the trace-free mean strain tensor §;, must
be used. Both T, and IIf, are given 1n Zeman (1990); discus-
sion of the pressure flux pay is deferred to the following para-
graph. A version of the ¢, equation (in 1D) required to solve
(13} 15 described 1n Zeman & Coleman (1991), and the L equa-
tion is as 1n (11) with n = 1. A new, inhomogeneous term in
g (13) is the so-called acceleraticn term: the product of the
mean pressure gradient 7, and the fluctuation velocity aver-
age T, = —p'u,/p. A customary approach to modeling %, kas
been utilization of the so-called Strong Reynolds Analogy (SRA)
which yields % x —u?/U; According to the DNS data, this es-
timate is of wrong sign and results in gross errors {gain instead
of loss of hinetic energy); we strongly suggest that the applica-
tion of SRA be avoided in modeling turbulent boundary layers
in the presence of shocks A more appropriate approach is to
use a model rate equation for the mass flux p'u,:

Dow, phu

Dt Ta

- Wi, b, = Pyl (14)

The first term on the RIS of (14) is a relaxation cerm, which
dnives the mass flux to zero (after the shock) on the fast acoustic
timescale 7, in accordance with the DNS da.a. Eq.(14) yields,
within the shock, p'u; < 0, 1e the acceleration term in (13)
dampens turbulence as expected by the Rayleigh-Taylor analogy.
Apphcation of the SRA yields an opposite (destabilizing) effect,
which is unphysical.
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Modeling the pressure flux Pur is not straightforward. It
would appear that in the incompressible limit M: — 0, par
should be neghgible; however, 1n the vicinity of the shock, this
isnot so It may be more appropriate to utilize the observed fact
that the fluctuations of density and temperature are posttively
correlated (as opposed to SRA) so that

T = epp tut’, (15)

where the mass flux p'u, can be_determined from (15). TFor
the strictly adiabatic relation 77/T = (v — 1)p'/p, the constant
¢y = 1.0. Note that according to (15), the divergence (Pur) 1
needed 10 (13) contains terms that would reduce the magnitude
of the acceleration term.

"The principal purpose of the preliminary computations pre-
sented next s to test the effect of the pressure dilatation and ac-
celeration terms on the overall (modeled) response of turbulence
to the shoch and comparison with the DNS results. For simplic-
ity we neglected the total energy flux divergence in (13). This
15 not entirely justified since the flux divergence is expected to
vield energy gain, this gain is, however, of order O(A,) smaller
than the remaining trms in (13).

T he simulated flow is decaying 1sotropic turbulence subjected
to compression through a normal shock with the upstream Mach
number 3M; = 1.18 with the density (and veloaity) ratio 5, /py =
131. The rms Mach number immediately ne‘sre the shock is
M, = 0.13, hence the mitial compressitulity sndveed effects are
relatively small The results, using the modeling equations (13).
(11), and (15), are presented in Figs 8. 9. ena 10. We remark

that since the shock profiles of mean quantities are prescribed,

the model 15 unable to reproduce the extremely high fluctuations
levels associated with the shock motion These fluctuations are
passive and affect Iittle the turbulence response to the shock
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Fig. 8 Response of turbulence kinetic energy to the passage
through normal shock: comparnson of rodel prediction with
DNS data of Lee (1991). Model I: with ¢4 = 0.0004 m Eq.
(12): Model 1. c4 = 0.0
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Fig 9 Response of pressure variance, otherw:se the same as
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Fig. 10 Response of the streamwise component of kinetic en-
ergy (u}), otherwise the same as Fig 8, except Model IIf (see
text)

Here, Model I represents a base model with the acceleration
term included and modeled with the aid of Eq. (14) The pres-
sure dilatation model consists of Eq. (9) and the anisotropic
contribution 114 1n (12). Model II results show the effect of ne-
glectng 114, and Model TI (only 1n Fig. 10) 1s the base model
where the mass flux @ = —p'u,/p in the acceleration term in
(13) 15 evaluated according to SRA; e, T = ’I/‘nt/,/’f Since
the heat flux T, (computed from an equation analogous to
(14)) is negative, Q\/o acccleration term provides, in this case, a
large gaun 1n the u? budget. According to Fig. 10, Model Iil
overpredicts the u} amplification through the shock by about
200% We emphasize that the model results presented here are
ouly tentative and serve to point out the relative importance of
various mechanisms i the shock/turbulence interactions. The
detailed work on this problem is in progress

SUMMARY

The subject of the presented work has been investigation of
the pressuie-dilatation interactions in shear-driven and rapidly
compressed turbulence  The principal finding 1s that turbu-
lence subjected to rapid directional (anisotropic) compression
produces high negative values of the pressure-dilatation corre-
lation, which 1n turn leads to a considerable transfer (loss) of
turbulent kinetic energy to pressure fluctuations This trans-
fer mechamsm has been found to be important even in nearly
incompressible turbulence and 1s expected to be of importance
in flows of practical interest such as internal combustion engine
and turbulence/shock nteractions

A new model for the pressure-dilatation term has been pro-
posed to account for this raprd compression effects. Preliminary
modeling results ndicate that a significant kinetic energy losses
to pressure fluctuations may occur in the shock/turbulence in-
teractions.
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ABSTRACT

A physical interpretation of the stabihzing effect of Mach
number on free shear flows is offered  The effect of Mach
number on communication between regions of a shear layer
addiessed and quantified i the lunit of geometuic acoustics
The sound enmtted by a high-frequency azoustic source, lo-
cated inside a shear layer, is studied The generahzed Spell's
law 13 used to construct acoustic rays which ate <hown to
be highly distorted because of the Mach-number gradient.
Sound-mtensity calculations reveal that the influence of the
source on the surrounding medium becomes confined to a
smaller and smailer area as the Mach number mcreases s
proposed that the mhibited commumecation among regtons
of the flow field 1v 4 fundamental reason for the mherent
stabiity of compressible shear flows

INTRODUCTION

Pethaps the most characteristic effect of Mach number
on free shear flows 1s that it suppresses their growth and in-
stability Landaa (1944) fitst showed that the vortex sheet
becomes stable when the relative Mach number exceeds a
entical value (V2 for the equal-density case) Early linear
analyses {Lin 1953, Gropengiesser 1970) and single-stream
experiments (Sirerc & Solignac 1966) found that the growth
rates of compressible, fimte-thickness shear layers, decrease
sharply with increasing Mach number Recent hnear analy-
ses {(Ragab & Wu 1988, Zhuang et.al 1988), computations
(Sandham & Reynolds 1989) and two-stream experiments
{Chinzei et al 1986, Papanwoschou & Roshko 1988) ¢ -
ing a larger range of conditions, confirmed the above tiends
The experiments, i particular, showed that at high Mach
numbers the turbulent shear-layer growth tate decreases to
as little as one fifth of the incompressible value  Despite
tecent sigmficant gams in the compiessible turbulence field.,
a physical explanation of the bLasic mechamsin by which
compressibihty teduces the growth rate 15 not yet well e
tablisped

While compressible shear flows genetally contain den-
sity gradients, density effects alone are not responsible for
the Jarge reduction in growth rates Brown aud Roshko
{1974) showed that the growth rate of the subsonic, variable-
density shear layer changed only by about 50% when the
density ratio was vanied by a factor of 30. There s, there-
fore a large effect assorated wath the Mach nunmber sl
Morkovin (1987) stresses that upstreamn and cross-flow com-
munication 's essential for instabilities at supersome and
hypersome speeds  Ihis point 13 primarily based on Mack’s
(1084) hnear stal ity analysts, where 1t 15 shown that the
most unstable waves are those whose phase speed s subsonie

relative to the free- (ream velocity,

In abstract terms, we may attibute the flow stabil-
ity to the hindrance of communication among parts of the
shear flow caused by the Mach number Morkovin sug-
gests the existence of zones of intluence. defined by Mach
cones, outside which o disturbance 1s not felt Iixexdcn-
thal’s (1990) comptessible-turbulence model 15 based on the
assuirption that turbulent eddies whose rotational Mach
number 1s greater than umity do not participate n thad
entramment, while those with rotational Mach nuaber of
ity or less engulf flurd hke mcompressible eddies  The
mixmg-length model of Kin (1990) for o supetsonic shear
layer assumes that disturbances do not penetiate outside a
region bounded by relative sonie veloaitios

The above models are useful because they capture the
essential nature of supersonic flow However, they are in-
complete m the foliowing sense. first, these 1s strong ex-
perimental and theoretical evidence {see references above)
that stabilization starts at low values of the Mach number
where relative sonic velocitics canno! be defined, second, the
fact that the relative velocity is greater than somic does not
prove that information will not propagate outside the region
bounded by that velocsty We must be reminded that, in a
shear laver, we are dealing with a smoothly-vaiying velocity
profile  Traditional examples that illustrate lack of com.au-
nication m supersonic flow, such as a supersonic arplane
approaching an observer on the ground. can be used here
orly in a heuristic sense

The present stuuy attempts to addiess the effect of Mach
number on propagation of information 1 a shear layer with
smoothly varying velocity profile in a more quantitative, al-
beit still idealized. manner It should be stated at the out-
set that sound propagation in the presence of Mach-number
gradients has been the topic of nurmerous studies, some ref-
erenced later The intent of this paper 1s not to add to the
evisting theory, but rather to use that theory to understand
and quantify the hindian-e of communication caused by the
Mach numbet in a shear layer, in a manner that may help
further refiner ent of compressible-turbujence models Ge-
ometric acoustics theory 1s used because of its relative sin-
pheity and capability to produce a “picture” of the sound
ficld by ray trading

GEOMETRIC ACOUSTICS THEDRY

At high Mach numbers, the acoustic wave length of the
dominant mstabihity is similar to or smaller than the char-
actensstic thickness of the shear layer. Furthe. elaboration
on this topic can be found m the discussion section. It is
thus possible that geometric acoustics, and the relatea ray
theory, couwd be a reasonable approximation for studying
sound propagation n a compressible shear layer, at least for
obtaming qualitauve trends  The approxinatic~ improves
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as the acousiic wavelength becomes much smaller than the
charactenistic thickness of the refractive-index gradient (a
generalized defimtion of sound refrac :ve index in a moving
medium 1s presented later).

The study of geometric acoustics 1n a moving medium
has been extensive, so here we mention only a few selected
works., The subject was first addressed by Lord Rayleigh
(1913) who presented the bastc principles behind sound prop-
agation in wind shear and used sumple arguments to ex-
panded Snell’s law to include velocity gradients The funda-
mental wave and energy equations were formally established
by Blockhintzev (1916} whose “energy wvariance” law al-
lows calculation of acoustic intensity once the 11y paths are
known Hayes (1968) developed concise equations for ray
geometry and acoustic energy in a three-dimensional envi-
ronment and showed that these equations hold even when
the moving medium 15 unsteady, in the hnecanized sense

Ray constiuction has been a popular method for obtain-
ing an overall view of the acoustic freld and for calculating
acoustic intensity  Some of the carly ray constrnctions were
performed by Kornhauser (1933), wio considered the prob-
lem of a source n a linear velocity giadient More recently,
ray construction has been used for calculating the acous-
tic field i ducts contauning shear flows (Grunm & Hurst
1979). as well as sound propagation and canstic {ormation
in a boundary layer (Kriegsmann & Reiss 1953)

Hete we will examine the sound fieid generaied by a
source m a shear layer as momtored by an observer meving
with the fluid, with emphasis on the effect of Mach number
on ray distortion and the resuliing acoustic intensity dis-
tnibution  We consider a parallel shear layer with velocity
dependent only on the transverse coordinate y. and examine
how an acoustic source inside the shear layer 1s felt m the
surrounding flow field To facilitate the analysis, we place
ourselves 11 the frame of reference moving with the local
flow veloaity This transformation 1s depicted 1 Fig. 1.

yb yA Ui
P Yt

y=u

(Saurce Plane

m—

- - - oy=10 —

{Revener Plane)

U

Fig 1 Iransformation to receiver frame of reference

The frame on vhich we are stationary is located on the
»lane y = 0§ which, for the nurposes of this paper, will act
as the “receiver” plane Iromn this plane, we sce a velocity
distribution U(y)} ‘Lhe acoustic source 1s taken to be fixed
relative to the eceiver and 1s located at (0, y1) On the

The odenn ~f the
A ul

o v n —_ ’, Y, r
Arieen Tana o e b valasibe e ‘.’4 edges of the

scurce” plane y = ¥, the veloaity 1 1)

shear layer are defined by the velocities U, and U.,,. We
will restrict omselves to a two-dimensional problem where
all interactions occur on the z - y plane We are interested
in the geometry of the ray that connects pomnt (0, 3,) on
the source plane with point (x4, 0) on the recever plane
(I1g 2) The group velcaty, V, consists of the geometric
sum of the local veloaity vector and the local speed-of sound
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vecter. The speed-of-sound vector 1s inclhined at the wave-
normal angle 0 with respect to the vertical.

¥ =y\

y=10 >

T T

Fig 2 Ray path and group veloaity

Lotd Rayleigh (1945) postulated that the velocity of the
trace of an acoustic wave front on an interface between gases
of slightly-different velocitics 1s constant and arrived at at
the following relation between U, a, and 0:

a
U+cC S
where (' is a constant. This relation has been verified by
more 1igorous treatments of ray theory, such as the work of
Hayes (1968)

sinf =

Relating the constant C' in Eq.(1) to the conditions Uj,
ap and 8, at the ray origin (0,y;). we obtain the following
form of Eq (1)

ind 0 < 2)
sind = smby [~ ——rrr—r
Ya, + (U="U)sinb,
which can be seen as Snell’s law of refraction generalized to
4 moving medium

RAY CONSTRUCTI{ON

Civen the conditions at the ray orgin (U,, a1, 6,) and
the velocity and speed-of-sound distributions, construction
of the rays is now possible since 0 is known from Eq.(2). The
differential equations for the rays dx/rt = U — asind and
dy/it = -—acosd were integrated using a 4*-order Runge-
Kutta method with variable time step. Computations were
performed an a personal AT-386 computer. The ray con-
structions shown here correspond to a=constant and U(y)
de.cribed by a hyperbolic-tangent profile of the form

Uy) = A+ Btanh(ay + f)

4 = g+<x- _U—oo
A = —

B

B = ?anh_l(;—;)

a = tanh™! (Q%/_l) - B

i

1

|

|
.
w2
&

The velocity profile is such that y=1 (i.c, the distance
between source and recewver plane stays constant) for all
prescribed values of &y, U, and U_,,

Ail rays originate at (0, 1), and the recewver (zero-
velocity) planc is at y = 0 The Mach number at the ray
origin is My = Ujfa. The free-stream velocity above the
ray origin is Uy, and that below the receiver plane is U_,
defined positive. If the ray origin and receiver are chosen
to be at the edges of the shear layer, then Uy, = I/} and
. = 0. In the present constructions, U, = 1 50/, and
”-m = 0 n’)U) .
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Fig. 3 Ray construction for different M,’s.

Speed of sound is constant,




Fig. 3 shows the ray paths for M;=0, 0.5, 1 0, and 2.0
The rays corrcspond to 8; ranging from 0 to 300° 1n 12° 1n-
ciements For M;=0, the rays are straight, since no gradi-
ents are present. As M, increases, the rays get progiessively
more distorted In the cases with M) > 1, certain rays that
are originally directed away from the receiver plane get re-
flected from the upper flow region and eventually cross the
receiver plane. Although not included on the figure, some
rays that cross the recerver planc get reflected from the lower
flow 1egion and cross the receiver plane once more.

Knowing the geometry of the ray paths we can also con-
struct the wave fronts, shown 1 Fig. 4. The time interval
between wave fronts is 0.5, with a = 1 and y, = 1. As ex-
pected, the wave fronts also become distorted as the Mach
number increases The wave-fiont geometries for the M;=2
case are particularly interesting as they illustrate that, even
though the velocity at the source ts supersonic. the signal
eventually propagates upstreain of the source  Thisis due to
the 1ay reflections from the lower flow region, as illustrated
m Fig 7.

ACOUSTIC INTENSITY DISTRIBUTION

Of mterest now 1s to fiad the sound mtensity 1ecerved
by pomnt (x,0) from an acoustic source at (0.1). The sound
latensity 1s commonly defined as 1 = 2/(pa) where p' is
the acoustic pressure fluctuation and p the deusity of the
medium .\ fundaniental energy -consersation law in mcom-
pressible geumetric acoustics 1s that the product of intensity
and ry-tube area 1cmains constant. For the compressible
rase, the conszrvation law for 1, derved by Bluchhmtzev

(1916) and by Hayes (1968). 15 of the form

Iad,
9K

where A, 1s the ray-tube arca, defined by the mtersection
of adjacent rays with wave fronts, and @ = w/(1 - Msinf)
the sound frequency heard by an observer moving with the
medium, with w the frequency of the acoustic source Note
that the expression 1 Eq (4) cannot be evaluated at the
source  Rather, an assumption must be made as to the
value of the acoustic energy flux la, /0% conserved within
each ray tube

= constant (1)

i
y=10 l - A—i 4 — —)I
N

dz

Fig 5 Ray-tube geometry

To define a ray tubc, we consider two adjacent rays ong-
mating from the source with wave-normal angles 0, and
0y + d0y, as shown in Fig. 5. We now make the assumption
that the source 15 omnidirectional, that is, the energy flux is
mniformly distributed with 0; Conscquently, cach ray tube
contans an energy flux £d0;, where £ is a constant. The
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I{z) 0.6+

energy nvariance of Eq.(4) becomes

IaA,
02

= &db,

On \he receiver plane, where M = 0, the wave fronts are
perpendicular to the rays This gives Ax{x.0) = dz ccsfy,
where dz is the “footprint” of the ray tube on the r-axis and
0y the angle at which it crosses the z-axis (Fig 5). Also.
we note that §(z.0) = w=constant, since M(z,0)=0 For
a = a;=constant, the mtensity on the r-axis is

_e_d

ay dz cosly

In this paper, we will be compaing intensity distributions
created by a source with constant £ and w, hence the first
fraction on the right-hand side will remain constant. For
the sake of simplicity, and without losing any information
on the Mach-number effect, we set w?E/a; = 1 and obtain

dz\ ™
I{z}) = (cos()o :!—0—) (5)

The denvative dr/df; was computed by numerical integra-
tion (4**-order Runge Kutta) ot the relation dr = (U ~
acosf)dt, i connection with Eq (2)

Computations of [(x) were carrted out for the condi-
tions corresponding to the 1ay constructions in Fig 3. The
intensity distnibutions are shown in Fig 6, where 1t 1s ob-
served that they become narrower as M| mncieases At mgh
My, the intensity reaches very low values not far fiom the
soutce It 1s mstructive to connect these distributions to the
ray constructions of Fig 3 The low intensities are generally
associated with rays that cross the y = 0 plane after refle :t-
ing from the upper or lower flow 1egions, with resulting large
ray-tube areas

1.2

1.0+

08+

0.4+

Py
0.2+ W 5

0.0 4+— ¥ $
-10 -8 -6 -4 -2 0 2 4 6 8 10
T

F1g 6 Acoustic intensity distributions

INTEGRATED INTENSITY

The intensity distributions of Fig. 6 indicate that, as the
Mach number at the source location increases, communica-
tion between the source and the receiver plane is confined to
a smaller region. To make quantitative comparisons among
the different distributions, we examine the integrated inten-
sity along =

400
E = / I(z)dz (6)

-0
where E can be scen as a measure of the total acoustic
energy flux recetved on the y = 0 plane. From Eq (5), we




have

/+m db; do,

8y ~lom COSOO

" - - 7
E ~o0 cosfly dx ¢ ™
Note that the integral in = is converted to an integral in 6.
The relation between 8y and #; is known through Eq.(2)

ag sinfy
a; - U; sinby

sindy = (8)
thus evaluation of the integral in Eq.{7) 1s straight-forward
once the limits for 8; are determined. To find these limits,
we must establish the range of 8, for which rays actually
cross the y = 0 plane. Obviously, the rays that do not
cross the receiver plane do not contribute to the energy flux
received  Also, attention must be paid to which rays cross
the receiver plane twice.

l U+ac

U

¥y=uy

12

Fig 7 Ray reflections from shear-layer boundarnses.

The sketch of Fig 7 helps us visualize the discussion
that follows First, we note that no reflections can occui
i the uniform free stream outside the Jayer Therefore, all
reflections will occur within the edges of the shear layer, de-
fined by the velocities U4, and U_o,. We now examne the
ray paths as 0, increases from —7  Let 8, be the value of
0, corresponding to the first reflection on the upper bound-
ary (U = Uyoo, 8 = @400, 5100 = —1), which produces the
nightmost ray that crosses the y = 0 plune As 0, increases
beyond 8,,, the rays cross the receiver plane and exit to
the lower free stream until the first reflection on the lower
boundary (U = ~Uew, @ = G-eo, sind = +1) occurs at
the vaiue 8; = 0y, Yor 0, > 0y, all rays that are imtially
directed downwards get reflected upwards. Consequently,
they cross the receiver plane twice, until the reflection oc-
curs above y = 0. The last ray crossing the receiver plane
(U =0, a = ag, sinby = +1) corresponds to §, = 63. For
0, > 0,3, no more rays cross the receiver plane.

Since the conditions under which rays reflect from the
boundaries are known, the values of the corresponding 0,’s
are readily obtained from Eq.(2). We have.

O = -7+ Sm™ | e
" " (a+oo + U+m - Ul
0 - v =1 ay
= Sin (a_.,o SO ©)
o 5o (2)
13 Sin dot Ul

and Eq (8) becomes

R bz df) s d0
E = / Ly 2/ LI (10)
o cosly 0 cosly
T'he last integral 1s multiplied by two because, for 0y, < 8y <
013, the ravs cross the recewver planc twice, hence deliver
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their energy flux twice If the receiver is chosen to be located
at the lower edge of the shear layer, then 0,3 = €13 and the
last integral vanishes. It is interesting to note that the result
given by Eq.(10) does not depend on the specific functions
that describe U(y) and a(y) but only on the free-stream,
soutce, and receiver conditions

Calculations of E were performed for constant speed of
sound and for the following free-stream conditions:
(a) Usoo = U, U—oo = 0 (no reflections);
(b) Uteo = 15Uy; U_o, = 0.5U; (moderate reflections);
(c) Usos = 83Uy, U_o = 2U:(strong reflections).
The integrated intensity E 1s plotted versus M; in Fig. 8
First; we note that for M;=0, E = co. This is not surpris-
ing as we realize that the straight rays of the incompressible,
uniform-density case, create a footprint of infinite extent on
the z-axis. However, as M; becomes finite, E also bucomes
fimte and decieases with increasing My, reaching an asymp-
totic value at high M;. The magnitude of £ is higher when

ray reflections occur, as 1s expected from Eq (10)
8

6
c
E 4t
b
24 °
04— t + ¢
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Fig 8 Integrated intensity versus M, for
1) no ray reflections;

b) moderate reflections;

¢) strong reflections
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DISCUSSION

The inteusity curves of Fig. 6 warrant some discussion.
Let us start by noting that sound propagation gets altered
significantly even at low values of the Mach number  This
is further demonstrated by the integrated intensity plots of
Fig 7 Hence the velocity difference need not be sonic or
supersonic for the Mach number effect on communication
to become domimant

If we were located at the same streamwise position as
the source {x = 0), we would feel a gradual loss of sound 1n-
tensity as the Mach number at the source location increases,
but we would not be completely cut off from the source even
at lngh Mach numbers At M; = 1, for example, the inten-
sity loss would be about 40%. The M; = 1 case represents
communication between the edges and the center of a re-
gion bounded by relative sonic velouties. It is only when
M, > 2 that communication at z = 0 becomes significantly
restricted, but is still non-zero

As M, increases, communication is inhibited both up-
stream and downstream of the source, with the upstream
communication being attenuated faster with distance than
the downstream communication. This may provide some
physical insight into the cause of stability at high Mach
numbers. Since communication between fluid particles is
vital for the onset and devclopment of turbulent interac-




tions (perhaps best illustrated in shear-flow computations
using vortex methods), lack or hindrance of communication
will lead to slower responses to a given perturbation, hence
increased stability

The present study has been restricted to constant speed
of sound, primarily to hughlight the cffects of Mach number
uncoupled from eflects of density variation The equations
presented here, however, are gencral enough that they can
be applied to cases with speed-of-suund variation, provided
a = afy) only

The central question 1s, of coutse, how applicable are
the present results to a turbulent compressible shear layer.
In reality, the flow 1s unsteady and the disturbance wave-
lengths may not be short enough for geomettic acoustics
to be valid. Iowever, there 15 reason to beheve that the
underlying assumptions of this study, v ¢. steady flow and
small wavelength, may not be as unrealistic as one might
mmtially think The linear stability analysis of Mack (1984)
has shown that, at high Mach numbers. the most unstable,
higher-mode waves occur at fiequencies about three times
those of the first-mode waves Experiments on shear layers
by Papamoschou (1989) have indicated that the large-scale
tutbulent structure is very inactive at high Mach numbers:
there is imperceptible structure rotation and no evidence
of paining  In recent schlieren visualizations of supersonic
shear layers at very high Reynolds numbers by Hall ct.al
(1991). large-scale structures are not discernible but small-
scale turbulence 1s prevalent. Thus, there 1s increasing, al-
beit prehmunary. evidence that small ~cale turbulence may
be the dominant source of instability at ugh Mach numbers.
which would be n hine with the small-wavelength assump-
tion of thus study Furthermore, since supersonic shear lay-
ers grow so slowly, with fluctuation levels substantially lower
than m the incompressible case (Sanmmy & Elliot 1990),
they are much less unstable than their subsonic counter-
parts Note that Hayes (1968) has shown that ray theory s
still valid 1n flow with small unsteadiness.

[t 1s hoped that the above findings and discussion will aid
in the construction of more refined compressible turbulence
models that take into account the intricate ways m which
sound can propagate 1 a shear flow at high Mach numbers
The analysis presented here represents a first step towards
that goal, and in the future needs to be expanded beyond
the restrictions of geometric acoustics

CONCLUSION

Geometric acousties theory has been apphed to study
the effect of Mach number on the soumt field created by a
source mnside a two-dimensional shear fayer  {t 1s found that
the Mach number severely distorts the acoustic rays, cre-
ating regions where httle signal 15 heard  Sound-intensity
distributions on a streamwise plane become narrower with
wcreasing Mach number, ndicating a dimmshing influence
of the source on the surrounding medum  The study sug-
gests that the Mach nunber inlnbits acoustic interactions 1o
the shear layer, which is offered here as a fundamental ex-
planation for the stability observed at high Mach numbers
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Abstract.

The mixing model based on pairwise interaction of notional
particles in scalar space 1s analyzed The equations for the
higher normailized moments show that the model based on
umform probabulity for the outcome of the mixing interac-
tion does not approach a Gaussian pdf in the limit of decay-
ing or mamtamed turbulence Further analysis of the mix-
ing model generalized to conditional pdfs shows that mixing
can be regarded as jump process, where sclected notional
particles undergo mixing and particles not selected remain
unaffected. The jump rate pdf is shown to depend on the
pdf itself reflecting the availability of mixing partners Fi-
nally, it 1s shown that a modification of the pdf describing
the amount of mixing during pairwise interaction leads to
a mixing model which is governed by a Fokker-Planck type
equation.

1.0 Introduction.

The calculation of turbulent flows with chemical reactions
based on pdf methods requires a closure model for mixing.
Two approaches have been developed to deal with this aspect
of pdf metnods. First, simplified mechanisms for mxing 1n
a turbulent environment were proposed and their statistical
properties lead to closure models (Dopazo 1975,1979, Jan-
icka et al 1979, Pope 1982,1985) and second, mappings were
proposed to express the pdf in terms of a Gaussian and the
Jacoban of the nonhnear mapping (Chen,Chen and Kraich-
nan 1989) Following the first approach a class of closure
models based on the notion of pairwise interaction will be
analyzed It will be shown that either a jump process or
the approximation of a smooth process satisfying a Fokker-
Planck type equation results depending on the shape of a
pdf describing the degree of mixing

The pdf transport equation for the set of ! thermo- chem-
ical variables can be given for high Reynolds numbers in the
form (see Kollmann, 1987)

—{(Q(e1, o)1)} =

=51, = ) )

LY g et = i) ()

1= A=1

where the density-weighted pdf fi 1s defined by

fi= p-(ﬂ’T:);i‘P—I)fx(vn,- NN &)

and the scalar dissipation rates ¢, in the conditional expec-
tations are defined by

Brq 81,, @)

with T, = I, =T For homogeneous flows without chemical
reaction the pdf equation describes turbulent muxing at a
single point

[}
% . -3%5 Tt =e)h) @

Any closure model for the nuxing process described by (4}
should share as many properties as possible with the exact
termn It should preserve normalisatinn and mean values and
decrease vanances and covariances. The pdf should remain
nonnegative and should not spread outside the doman of al-
lowable states The presently available models for the mix-
ing process in the pdf equation have several shortcomings
(Pope, 1985 and Chen and Kollmann, 1989) The develop-
ment of improved mixing models 1 2quires careful analysis of
the physics of mixing and the mathematical properties of the

corresponding terms in the equation for the pdf. The case of
a single scalar variable will be considered for this purpose.

2.0 Moment analysis of the pair interaction model.

The class of mixing models to be considered in detail is given
by

(%f{— "{/ (@/ &' fil(@) TS, & o)

miz

~filp)} (8)

The properties of this class of models can be assessed in
terms of the normalized higher moments

L)

(077 9

pn =
In particular skewness 3 and flatness pq4 will be considered.
The central part of the mixing model is the kernel T. It

is the probability that the interaction of a material point
¥ = ¢ with a point ¥ = ¢” produces the values ¥ = ¢
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and ¥ = ¢' 4" ~ ¢ and is called the transition probability
T, ¢", ). T must satisfy the requirements

T(o, " o) = T(¢, @' ' + 9" =) (10)
T(¢',¢" 0) =0 for p ¢ [¢,¢"] (11)

and T 1s pdf with respect to ¢

1
A deT(,¢" ) =1 (12)

Conditions (10)-(12) lead to a class of transition pdfs con-
structed as follows

T(¢'.¢" 0) = GIOH(¢, ¢, ) (13)
where
I " — 2 1 / Ui
(N -¢)=m[¢—§w +¢')] (14)
and

0 otherwise.

and G is a nonnegative symmetric function defined on {-1,1)
such that

i
[ aco=2 (16)
holds If G = 11is chosen the mixing model of Dopazo (1979)

and Janicka et al. (1979) is recovered and for G(¢) = 26(¢)
Cuil’s (1963) droplet interaction model is obtammed The

function G(¢) describes the extent of mixing and is anal-
ogous to the pdf A(a) mtroduced by Pope (1982) for the
same purpose The moment equations follow from (8) by
integration

0
50 = L - (e (1

where
—— ! n /‘l ! ! 1 U " Y ! 1
n= [Caon [Cag [ 4 )60 4" )

H(¢' ", 0) (18)

The triple integral can be expressed in terms of the moments
of the pdf f and after lengthy manipulations the following
result 1s obtained

n

1 n n
In = s Z (k)z\lknu (19)

k=0(2)

where the summation is carnied out with increment two (even
terms only). M7 15 defined by

M} = i’f(-n" (i) (" - k) (WP (P"PmTy  (20)

p=0 g=0 1

and G possesses finite moments of even order, because

,r

1 rl
mg = * = H(¢) =
e= | diGQ= [ G@o=2 (@)

holds. The moment equations are then given by

o . ¢s 1 n n k n—-k
5V =T (k)"'AZZ(-l)"
k=0(2) p=0 ¢=0

0T e e e R S

Inspection of the right hand side shows that no moments of
order higher than n appear. An easy calculation shows that
the right hand side of (22) for n < 1 15 indeed zero, hence
are normalisation and mean value preserved in time. The
equation for the second moment
Sy = -Lo-mi@) -0y (@)
Gt 4r
can be solved analytically for given G(¢) and time scale
independent of ¥ The solution can be inserted into the
equation for the third moment, which can then be solved
This process can be continued up tc the nth level and 1t
becomes clear that the mixing model (8) corresponds to mo-
ment equations that are linear with time dependent coef-
ficients The segregation parameter for a binary mixture
follows from (2) and (22)
L)
%ﬂ,m = —:—:_-(2 —m2)aap
and shows that asp decays with a rate determined by the
time scale and the second monient of the transition pdf

The earlier analysis of Pope (1982), Kosaly (1986) and
Kosaly and Givi (1987) showed that the normalized higher
moments of even order diverge and that the skewness (n = 3)
temains constant if the time scale 7 1s constant Equation
(22) reproduces these results. It follows from (22) and (23)
that

o= 0 (24)

and

9
-5‘7‘ = {-Gf;(z — 2y + ma)(jua + 3). (25)

hold It follows fiom my < 1 and mny > 0 that 4 grows
exponentially for constant time scale 7. The time scale 7 is,
however, not constant in homogeneous turbulence unless it
is mantained by an external force field. If 7 = 7o¢™ with an
exponent larger than umty, then the normalized moments
cease to grow witl time and the limting form of the pdf de-
pends essentially on the transition pdf The measurements
of Comte-Bellot and Corrsin (1971) show that the time scale
formed with the kinetic encigy and the integral length scale
has an exponent m = 1.025 m ther grid generated turba-
lence. The normalized moments would not grow over all
bounds in this flow.

3.0 Analysis of the mixing model: Jump process.

The integral form of the muxing model indicates that it may
be regarded as jump process. This is 1n fact the approxima-
tion used in the numerical simulation, where only a randomly
selected subset of notional particles takes part in the mix-
ing oporation and the rest remasins unaffected. The analysis
will be carried out in two steps: First the pdf equation cor-
responding to a stochastic differential equation containing
the increment of a jump process will be derived. This is a
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fairly standard procedure and can be found for instance in
Gardiner (1983, ch.5.4). Let the sde be given by

dY = —Adt + BEdW +dJ (26)

where dIV denotes the increment of a standard Wiener pro-

cess
{dW(B) =0

and
(dW()dW (¢ + dt)) = dt

and dJ 15 the increment of the jump process The pdf equa-
tion 1s now sought for the conditional pdf f(y,tlyo,to) de-
fined by

F(y, tlyo,to)dy = Probly < ¥ (1) y+dy,Y (ko) = yo} (27)

where to < t must hold Several conditions are now umposed
on this pdf to insure that the equation governing its temporal
evolution exists. Let € > 0, then the following conditions
must hold uniformly 1n y, 2.t

1 .
—_— z = z -zl >
Jim St Otz ) =Wy ) forly—zl2€ (C1)

1 o
Jmgr [ ity 840 = 460+ 00
ly—zl<e

(€2)

. 1 2 VA= Rfe 1
Jim / dy(y — 2 f(y,t + Atz t) = Bz, 1)+ O(e)
ly—zj<e

(€3

Conditions (C 2) and (C 3) must also hold uniformly with
respect to e. The function W(y|z,t) may be singular but
must be at least integrable The definition (C 1) implies
that W(y|z,t) describes the expected rate of jumps of size
ly — z| per unit time. Integrating W over all possible values
v leads to the expected rate of jumps (or mean time scale
for the jumps)

/ dyW(ylz,t) = R(z,2) (28)

originating at the value Y(t) = z. The conditions (C.2)
and (C.3) imply furthermore that W 1s related to the dnft
veloctty A4 and the diffusivity B by

/ (v= )Wz, t) = Az, ) + O()  (29)

ly—zl<e

and

[ w2 =peo+o0 @0

ly~zj<e

Finally, it should be noted that the Lindeberg condition (see
Gardiner (1983), ch.3.4), which states that the sample paths
of the stochastic process Y(t) are continuous if for ¢ > 0
W(ylz,t) = 0 holds with probability one, allows proper in-
terpretation of W. It follows that W # 0 implies indecd sam-
ple paths with jumps. The transport equation for f(y, |z, ")
can be obtained by multiplying the pdf f with an arbitrary,
twice continuously differentiable function Q(y) that vanishes

together with its normal derivative at the boundary of the
range of values of Y and integrating over this range. Ex-
ploiting the conditions imposed on f and the smoothness of
Q(y) leads to the equation for the pdf f (see Gardiner 1983).
It emerges in the form

af  d 18
—% + a—y—(Af) = §a—y2(Bf) + / daW (yle,t)f(x, t]z,t')

~W(zly,t)f(y,tlz,t')] (Y
The solution is determined by the imtial condition
f(yat"z’t) =6(y—z) (32)

The equation for the single point pdf f(y,t) can be obtained
without difficulty by multiplication of (31) and (32) with
f(z,t') and integration over z. The resulting pdf equation is
identical with (31) and the initial condition becomes

fu,t') = foly)

where fo denotes the given initial pdf. Equation (31) is the
tool for the analysis of the mixing model (8). We note that
the integral model (8) can be recast as

(), .-

1 1
[ dertatiets: [ a6t TG )
0 0

-—éf(y.t|z,t') (33)

because the derivation of the mixing model can be carried
out for the conditional pdf f(y,t|z,t') without any modi-
fications. Comparison of (33) with (31) indicates that the
definition

1 1
W= 7 [ A O (38
)
puts the mixing model into the form of a jump process. The

property to check is the existence and the value of the inte-
gral

1 1 1
/ drW*iz|y,t) = %/ d:c/ dy" f(y" tlz, YT (v ¥ x)
0 0 0

It follows at once from (12) that

1
/ dzW*(z|y,t) = 1 (35)
0 T
holds and the mixing model ewnerges in the form
Py H
(Aelnt)y / dz{f(z, ]z, W* (y]a.1)

at mz 0

_f(yatlzvt’)”,'(xlyvt)] (36)

equivalent to the pdf equation for jump processes (A = B =
0 in (31)). The probability W* for jumps from z to y per
unit time for the mixing model depends according to (34)
on the probability f(y",t}<,¢) of finding an element with
Y = y” such that y is the interval |r, y"] and the probability
T(x,y",y) for the interaction of z with y" to produce an
clement with Y =y
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4.0 Analysis of the mixing model: Relation to the

Fokker -Planck equation.

The pdf equation for pure mixing was shown to have the form
of a master equation for a jump process (36). It 1s instruc-
tive to consider the limit of this equation for the jump size
approaching zero. It 1s known that jump processes can ap-
proximate diffusion processes in this limit (Gardiner 1983).
The investigation of the mixing model for the limit of van-
ishing step size 1s based on the following consideration In
each time step all the notional particles representing an ap-
proximation of the pdf participate in the mixing step and
the time step conirols the amount of mixing. It follows that
a new parameter € measuring the amount of mixing m. st
be introduced nto the mixing model. The pdf for the jump
rate is modified to include ¢

1 1
Wole,to = 7 [ a S 00T e @0
0

via the transition pdf T

T(z,y",y,e) = G((, ) H (x,y",y) (38)

where 2 1
- 1 —_ " \
Q('rwy'y)=ll__yu{[y—§(‘r+y)] (39/

denotes the centered variable defined in [~1,1] and H 15
defined by (15) The shape function G controls the amount
of mixing if it 15 modified to allow mixing only in the e-
newghbourhood of the states before mixing' G(¢,¢) > 0 for
(yelr,r+eUly" —ey’jforr <y)or(y €z -er]u
[y".y" 4 €} for r > y) and G(C, €) = 0 otherwise Clearly, if ¢
approaches zero no mixing takes place and if e = 1/2(z+ ")
the onginal model is 1ecovered The analysis 1s now carried
out with the shape function defined by

G(¢re) = A{of

whete A denotes a quantity depending on € only Note
that this defimtion of the shape function gives the iaximal
amount of mixing for the restricted range and 1s symmetric
as requred for the pair exchange model The jump rate pdf

emerges now 1 the form

C+l-e)+6((-1-¢)} (40)

Yy /
il = 2z o) [ Eecr1-0

1 ]
+h(y — r)/ dy"l—,{lg%é(c -1—¢€)} (41)
y

where h denotes the umt step function  The ntegrals can

be evaluated and

A1 1
(e, = 2t - ()

1 2
iy — o) fL ’1’;’1/ /26:)} (42)

is obtained. The two integrals constituting the mixing model
{36) can now be evaluated if the pdf f is analytic. Taylor
senes cxpansmn for € € 1 (using (1~ 1/2¢)"! =1+ 1/2¢ -
1/4€% + O(€%)) leads to

1/2¢x

vy~ = f(y - oz —y) 2
f(Tl_l/‘ie_)—f(J 1/2¢(z —y) + O(€%))

which 1s expanded to third order leads to

y—1/2zx f

f(m) = f(y) E(I Vgt (T y) 7 ,J’O(f)

A similar expansion for

y+1/2ex f

of
f(m + 6(1 y): 3 2+0(€)

)=fly )+ zele-v)5-
lcads to the expansion for the jump rate pdf

W(ylz,e) =

U+ %e{(z ~9)3L 0ty = £) = e = ) = S0

+3 62{(1‘ U) 52 —"(x y)-—(h(y 2)~h(z=y))]+0(c")}

(43)
The integrals 1n (36) are evaluated over the interval (07, 1]
to preserve the normalization, which implies that

foy =y =4

(0) = -—(1) =0
holds. The mixing model appears now in the form of a power
serics with respect to €

0f(w.:,0)
() e

ij ig;/ drf(z){a - y) /(lrf(.r)(z'—y)]
1 y a2 1
-%f(y)[/y drf(r)—/o d’f(’)]%‘[?ﬁ]{'/o de f(z)(z-y)*
of v
-—2-55(/0 dzf(z)(a — y)

1 ¥
- / dz f(2)(z - 9)) - 4f10) / dzf(z))+ O(e)}  (44)
¥ 1]

This relation shows clearly that for time scales of the or-
der ¢ a Fokher-Planck-type equation results for the mixing
model wrth the shape function modified according to {40).
It foilows that the dnft term reduces the variance and the
interaction of a notional particle with a randomly selected
mixing partner appears as random stiriing in scalar space
Numerical venfication of this result is presently carried out

5.0 Conclusions.

The wixing model based on pairwise mteraction of notional
particles m scalar space was analyzed The dynamics of
higher normalized moments shows that the mode! based on
uniform probability for the outcome of the mixing interac-
tion does not approach 2 Gaussion pdf in the limit of de
caying turbulence The normalized moments approach fi

nite limit values if the mixing time scale varies according to
the experimental evidence but Gaussiamty is not recovered.
The analysis of the mixing model can be generalized to con-
ditional pdfe and it follows that mixing can be regarded as
jump process, where selected notional particles undergo mx-
ing and particles not selected remain unaffected. The jump
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rate pdf was shown to depend on the pdf itself reflecting the
availability of mixing partners. Finally, it was shown that
a modification of the pdf describing the amount of mixing
during pairwise interaction leads to a mixing model which
is governed by a Fokker-Planck type equation. The mixing
interaction has to be carried out with a time scale propor-
tional to a new scale e. If € is sufficiently small the mixing
model appears as drift and diffusion n scalar space.
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ABSTRACT u,® Scalar fluxes.
The paper describes a second order closure model X, Cartesian space coordinates.
for calculating strongly heated turbulent flows
such as plumes, and turbulent jet diffusion from € Dissipation rate of K.
flames in the atmosphere. In such flows, the _
temperature aependent density variations are not €q Dissipation rate of 82 /2,

negligible, and the usual Boussinesq approximation
1s not justified. Therefore, it is necessary to use
mathematical models derived from the variable
density flow equations without such restractive
simplifications. The model presented in this paper
1s based on a formulation arising from a first
order series exprnsion on  the relative pressure
fluctuutions (Eq. 1), a linearization of the
thermal wvariation of the physical properties (p et
K) (Eq. 2) and a new analysis of the dissipation
mechanisms for compressible fluids .

NOMENCLATURL

B:b Expansion effects for any b correlation.
ao Diffusion for any ;E.correlatlon.

D = .

—_— + Mean material derivative.

J
Dt 3t J ox,

E Dissipation rate of K with constant dynamic
viscosity.
Eq Dissipation rate of ©°/2 with constant

conductivity coefficient.
X Thermal diffusivity.
P Production for any ab correlation.
P, p Mean and fluctuating pressure.
R R/m.
R constant of ideal gas.

m molar mass of the gas.

F» [¢] Mean and fluctuating temperature.

Ux' u, Mean and fluctuating components of
velocity.
u,u Reynolds stresgses.

%, ; ¥ ¢ Pressure-interaction terms.

K Turbulent kinetic energy.
I Dynamic viscosity.

9? Temperature variance.

fo] Density.

INTRODUCTION

For the development of the turbulence statistical
equations for flows with density variations, two
ways of decomposition have been proposed:

- Favre (1965) and Chassaing (1985) proposed a
statistical decomposition named wmean weighted
averaging: the instantaneous physical variables are
split as:

Macroscopic| non-zero mean
quanti;égs randorn variable
¥

¥= = ey
P Y=Yy

- Rey (1985, 1990, 1991) investigated another
decomposition of the density variation turbulence
mechunisws, using the classical random variable
with zero mean (Reynolds decomposition). The
turbulent processes are splitted as:

isovolumetric turbulence mechanisms change

turbulence mechanisms by volume variations

The wain advantage Jn this last proposition,
congists in the ability to identify in thas
formulation the mechanisms that are 1n
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1ncempressiole fluid flows. Particularly, the
classical second order closures (Launder et al,
1985; Lumley, 1983)) are still valid for the
isovolumetric turbulence mechanisms. Furthermore
the statistical terms interacting with volume
variations are all known or negligible,

This formulation arises from a first order series
expansion on the relative pressure fluctuation:

1 _RT ,
== :[1 - 2] (1)
P p P

Then the statistical process applied 1in the
equations s the usual Reynolds averaging approach.
The model presented in this paper 1s based on
olumetric variations given by Eq (1) and the
analysis of the thermal variations of the physical
properties (viscosity and thermal diffusivity)
linearized as follow:

WT) = o+ AT = T,) 5 X(T) = X,+ B(T - T,) (2)

where the subscript o refers to reference values.

THE CONTINUITY EQUATION.

The main difriculty of this formulation concerns
the closure of the set of equations because the

velocity divergence is not zero. In this model the
continuity equation is written as

divU -F=0 (3)

As a first attempt we write

v T e -0 1 8P 1 oT)
crv v Pax, T ax‘J

then F is expressed using Reynolds averaging on the
right-hand side. XKeeping only the dominant terzs, F
can be written as:

The divergence condition in Eq. 3 nust be solved
together with the transport equations. It will be
directly satisfied by an extended version of the
artificial conpressibility implicit method
(Ramirez-Leon et al, 1991).

SET OF EQUATIONS.

From these considerationg a set of equations can be
written in the following general form as:

turbulence

Classical isovolumetric mechanisms
description of transport

as for <
incompressible -

flows RT turbulence

(Iv) + —-|isovolumetric mechanisms

P lof molecular diffusivity

deviation ( turbulence
+ mechanisms change =0
(Vv) by volume variations

5)

Zpis formulation 1s valid for mean quantities ﬁ;or
T ang_ for all turbulent correlations luiuj. K, €,

b8 @82
WO.SEGQ,WU“&.WUﬂ..“}

TURBULENCE MODELLING.

The statistical second moment transport equations
are derived wusing the volumetric variation
equation Eq. (1). As an example, the heat fluxes
1,8 equation is given hereafter:

Du,

Dt =-‘19-Di8’¢18 618‘818 (6)
------------- (Iy)mmmmmmmmmmmem =(Vv)-

where

(6.1)

yuy, —  (6.2)

T a[ o ae]* (140 o0
13

ax, B Ho3x dx,  Fr ax, P Ox
B - % Rg Ukai‘:‘— (6.3)
b - R(?i; 8) . gé% (6.4

gz_ 'R 3p ”Ux du u, v, {pr 6uk9_"
B;9=-:-l ——  —— + ——— 4g, —_

T g ox, Dt X

Similarly to (6), the full set of equations is
derived for all dezpendent wvariables and can be
written as follow:
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Du‘uj .
Do T T Pug T Dy Rkt ¢ By 0
D .
T P, - D + P - €, + By (8)
pe? .
_D—E- =z - Pez -D 2 + 4’92 - eaz + Bez (9)
DE .
E; = - P - DE - € + BE (10)
DEg .
Dt - " Feg "Dy 765 * By (11)
------------ (Iv)~=em=cnmam- =(vv)-

With regard to Eq (2), the right-hand side of
equations (5-10) clearly separates the
"isovolumetric" effects (Iv), which are similar to
the corresponding terms in the equations for an
incompressible fluid, from the expansion effects
{vv).

The exact definition of dissipation terms includes
a temperature dependent diffusivity coefficient.
So, new cumbersome correlations appear in the
system, This difficulty can be avoided if using a
simplified form. Assuming high Reynolds number and
local 1isotropy hypothesis, the dissipation terams
are expressed as:

o du, ou
R i §
€ = :g ol E i E=p, ——a— (12)
0 Ax, o
P Mo Xy 9%y
X &T 3 0
€g = o — Ee H Ee = )%-—-__ (13)
% C p axj c’)xJ
where the diffusivity coefficients therzal

dependance involving temperature fluctuations have
been neglected.

So, this set of equations is open and the selection

of the proper models for closure must now be
considered.

SELECTION OF CLOSURE MODELS.

The second term of (6.3) can be neglected assuming
a high Reynolds number and €, 18 set equal to zero
based on the local isotropy assumption.

If we were to keep the incompressible flow closure
methods, difficulties would arise from both the
pressure correlations and third moment terms.
Therefore, the closure model has been determined in
the following way:

Pressure correlations terms.

A model for the so-called pressure-rate-of-struain
correlation 1s first presented. This term may be
written by means of a Poisson egquation, as

part generated Interaction
- from a mutual between
R(T_: 6) p fﬂl =linteraction between|+| the mean
P 9x, turbulence strain and
components turbulence
----- clow part------- -rapid part-
(14)

where ¢ stands for u,, 8, yu_, u 8, etc.

In the incompressible fluid case, for ¢ = u,, the
rapid part 1is commonly modeled wusing the
return-to-isotropy concept and the slow part using
the isotropization-of-production concept. For the
compressible fluid case, Ramirez-Leon et al {1990)
showed that this formulation is still valid.
Similarly, for ¢ = 0, we can write

T
b 9= ~Coo, 17 *Cos. 27 ERRCIEL A P

¢
--rapid part--

(15)

where T, is a mixed time scale, Cpo., = 3.31, and
Cpg..= 3-46 . The value of Cgg ,= 0.45 has been
modified from the inccmpressible value (Launder et
al, 1975), in such a way to include the expansion
effects.

Vandromme et al {1983), have found that a similar
formulation 1s appropriate for compressible fluid
flows.

Pressure-diffusion terms.

The pressure-diffusion terms are supposed to have a
weak influence in the development of a
two-dimensional turbulent flow. These terms have
been neglected.

Third order correlations.

The exact equations for the triple products have
been thoroughly derived. In these equations, the
convection, the main strain production, and the
diffusive transport by pressure and molecular
action have been owmitted. Furthermore we used the
gaussian approximation for the fourth moments. The
final form of triple correlations is:

triple The simple volumetric

corre- | = - C.q|gradient-diffusion|-| expansion

lations form part
------- (Iv)=m==mm=e === (Vv)

As an example, we give the modeled equation
for v u,6 correlations:

du,6
uluke= -CuueTn Yy, -5,?
--=(Iv)=--
u,0? G,aﬁ; . du,u; e u,u 6 = T . 8u, 6’
T ‘ax, ax, k T zle x,
------------------ L
(16)
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where an "isovolumetric" part (Iv) and a volumetric
expansion part {Vv) appear.

Finally, the modeled equation for the turbulent
heat fluxes can be written as:

Du, 8
Dt == Pie

3 ux—_e- U u, ul_-e_ —_— Bﬁ‘ aﬁk
ey Co0.177~ “Ce0.2 0 T “Coo, 3w 8|5+ ax,

+ CLuoTe [Ur by - —1U, +

aqe' uxe2 - aﬁk du,u,
— — +
ax, T ax,; ox, &«

UZ:’):Z_ * ox,

= CugTa

uu, 0 [— 3T a-uk_G]

02 ] u,8 o uuy w8 w == au; . au,
- ] = + <4 ryna-
E? 38, 1 T, $6.27 T, $8, 37k axk ax1
5; Dﬁl au‘ Uk u‘e DE auke
—_— + + —f— + (17)
T Dt 3x, O F bt ax,

The complete set of equations 1is derived using
similar considerations.

A detailed description of the present model will
appear elsewhere (Ramirez-Leon et al, 1992)

NUMERICAL PROCEDURE.

The previous section has outlined a closed system
of elliptic partial differential equations {6-11).

A finite difference approximation has been used
involving the M.A.C. method with centered-
differences for diffusion termes and an
upwind-weighted scheme for the advection terms. At
each time step, the divergence condition (3} is
directly satisfied by means of an implicit
iterative method. This method is derived from the
artificial compressibility method (Chorin, 1967)
extended to non-zero divergence flow (see Egqs (3)
and (4)).

Div V + F (Eq (3))

120 i T T J l
oot=r TR SN T
804 i i l
60 e—— F = 0 (FLOW 1)

40 ) we F # 0 (FLOW 2)

20 A

OMWV

i 1 T
0 200 400 600 800 1000
Iteration number

Fig 1. Convergence of the continuity equation.

(Eq (3)).

As can be seen on Fig. 1, the convergence curves
for an incompressible flow calculation (Chorin's
method) and for a non-Boussinesq flow calculation
(present method) are not significantly different.

SIMULATIONS OF A STRONGLY HEATED JET,

Preliminary numerical calculations were carried out
with a simplified version of the model. The aim was
only to test the sensivity of the non-Boussinesq
extra terms originated from the volume variations.

This initial tests were run neglecting the
compressibility condition in the continuity
equation (3) (di.e. F = 0). Therefore, only the
volumetric effects appearing in the transport
equations {(denoted Vv in Eq 5) are accounted for.

This paper is restricted to these calculations, the
full model results are presented on slides in thas
Symposium and will be soon published by
Ramirez-Leon et al (1992).

Two heated plane jets with the same exit Froude
number, are considered. The exit velocity and
temperature conditions are presented in Table 1.

lTeble 1. Exit conditionsl

{ low| tewperature |width|velocity| Froude
(K) (m) (n/s) |Number

1 22 80 5 0.4
470 3.7 5 0.U

N

A vertical weakly-heated jet (AT = 22 K, denoted
Flow 1) and a vertical strongly-heated jet (AT =
470 ‘'K, denoted Flow 2) were calculaced in such a
way to compare the transversal turbulent profiles.

-2
710
*
u,e 6 . *5* ***
%
Ugax8Tyax 5 FLOW 1 f* rrLow 2
ol
4-
v
. £ *"g‘
3 £ MA‘*‘ %
** ... '... o
[ 4
21 gc e ‘/ '
* 3 .
14 M
04+ [ DoUSSINESQ APPROXIMATION «
® NON BOUSSINCSQ CALCULATION
¥ T ) i

3 -» -4 0 1 2 3

X
L

Fig 2. Transversal profile of the vertical
turbulent heat flux in heated jets.
e With volumetric expansion
effects.
* without volumetric expansion
effects.
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The longitudinal and the transversal heat fluxes
and the temperature variance profiles, normalized
with the axial velocity and the centre-line
temperacure excess, are plotted (star symbols) on
the figures 2, 3, 4 respectively.

Here m denotes the horizontal space coordinate
normalized with the half width b of the mean
velocity. The same calculations were also carried
out avoiding volumetric expansion contributions
(terms Vv) on turbulence mechanisms {circle full
symbols).

As it is readily apparent, the extra terms affect
the turbulent thermal fields of the strongly heated
jet. They induce a strong decrease on the
longitudinal  turbulent heat flux level. This
influence is negligible in the weakly heated jet-

As it can be r2en in Fig. 4, the horizontal heat
flux is only slightly affected. This illustrates
the non-isotropic influence of the "extra terms"
contributions. Nevertheless, the variation is sgtill
significant,

5102
w0 4|
UMAXATHAX 3 b

2 4

-2 4

-3

-4 sk BOUSSINESQ APPROXIMATION
® NON BOUSSINESQ CALCULATION

-5 T Y T T -r
3 -2 A o 1 2 3
n = X/b

Fig 3. Transversal profile of the horizontal
turbulent heat flux.
(Symbols as Fig 1)

CONCLUSION.

An extended non-Boussinesq model is presented in
the framework of turbulence modelling for variable
density flows. Interesting results are found in the
preliminary calculations for symmetrical plane
heated jets; e.g., non-Boussinesqg terms induce a
strong decrease (over 60%) of the longitudinal
turbulent heat flux u,8. A synthetic presentation
of the extended model is given. It has been applied
to vertical plumes and flame jets spreading in a
uniform stagnant atmosphere. The most interesting
results are presented in the Symposium,

MAX

NON BOUSSINESQ CALCULATION

% BOUSSINESQ APPROXIMATION | %
L]

()‘) ¥ 1 ¥ 1 L
|3 -2 o) 1 2 3

X
"*E

Fig 4. Transversal profile of the temperature
variance. (Symbols as Fig 1)
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ABSTRACT

Here. we present new results on the compara-
ison between two models of turbulent combustion
and the results of the Direct Nunerical Siinulation
of premixed reacting turbulent homogencous and
isotropic flows. The first model to be compared is
a combination between a presumed P.D.F. model
and the LE.M. model (Interaction by Exchange
with the Mean). The second model is the Curl's
model (1963) where a P.D.F. transport cquation is
solved by a method of Monte Carlo. The numeri-
cal experiment under study is a turbulent premixed
inedium with pockets of burned gases This ailows
the study of the problem: of the autoignition.

INTT 'DUCTION

All the models that have been so far for the pre-
dictions of turbulent reacting flows 1est on closure
assumplions, similarly to the mathematical turbu-
lence models that have been proposed for non re-
active turbulent flows. Some of these assumptions
have been tested against experiments, but only to a
small extend. There is a great need of detailed ver-
ifications of the proposed assumptions, and exper-
imental verifications in reacting flows are far more
delicate. An other advantage of the Direct Numer-
ical Simulation is that we can casily separate the
several different phenomena which interact i tur-
bulent reactive flows. with which several different
closure assumptions are associated, and 1t is quite
impossible, in a physical experiment, to test sepa-
rately these different assumptions.

To our knowledge, the most recent work which
deals with the same aims is described by P.A.Mc-
Murtry and P.Givi (1989). Contrarly to P.A.Mc-
Murtry and P.Givi who are interested with the non
premixed case, we present here results only in the
premixed case.

I DIRECT NUMERICAL SIMULATION

We consider here a 3D homogencous incomn-
pressible turbulent flow field. So, the governing
equations for the flow field are the following Navier-
Stokes equations:

2
%4,,[3%::_1_0!_’- Al,_a ”‘2' (2)
Ot drg  p Bag Oy

where v is the molecular viscosity, p the pres-

sure, p the density. Iuitially, a given energy spec-
trum is imposed by the relation

BE(k) = kexp(—2k?/16) (3)

where & is the wavenumber. Then the turbu-
lence is free-evolving. Due to the given spectrum,
the initial Reynolds number based on the integral
scale is about 50. The rumerical method to solve
the set of equations is a pseudo-spectral method
(with 32% or 64® grid meshes). This method has
been used by several authors {e.g. E.S.Oran and

J.P.Boris (1987), S.A.Orszag (1972), P.A. McMurtry

and 1’.Givi (1989)) due to its high spatial accuracy

to solve homogeneous isotropic turbulent flows.
The equation governing the evolution of the

perfectly premixed turbulent scalar field is:

ac ac v 9'C .
TR it e R (4)

where Sc is the Schmidt number, ¢ the scalar
field and 1V the reaction rate. The Schmidt num-
ber was chosen equal to 0.36 in order to avoid an
increase of the energy at the spectrum cut-off. The
Lewis number ( the ratio of the heat diffusion over
the mass diffusion) is equal to 1 and the flow is
isenthalpic. In this case, one can demonstrate ecas-
ily that the temperature is lincarly related to C.
That’s the reason why we have chosen a reaction
rate depending only on € ( and not on the teinper-
ature) given by the relation:

.

cu-cf

v

W(C) = -42 (5)

where 7, is a characteristic chemical time (1/7. =
Jy W(C)dC). The quantity (1-C) holds for the tem-
perature, and the usual Arhenius law for the kinet-
ics is replaced by a power law. C = 0 corresponds
to burned mixture and € = 1 to unburned mixture.
At t = 0. we have large pockets of unburned mixture
with small pockets of partially burned mixture in
order to initiate the reaction. As time increases, an

Qua _ 0 (1) autoignition phenomena takes place in a turbulent
Oz, medium. This phnomena is similar to the study of
C.Dopazo and E.E.O'Brien (1974). On the Fig.1,
we can see that the hypothesis Le = 1 and & = cste
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is not at all restrictive since with le=035or Le = 1.5
with a reaction rate given by W = —42C(1 - T)°/7,
the results are similar althcught ¢ and 7' are no
more linked. The spectrum of the scalar fluctua-
tions is the same that the velocity spectrum.

The Damkhéler number (= rr/7 where 7r is
the characteristic turbulent timeg i5 near unity in
all the results presented but it has been slightly
varied to see its influence.

<C>

0 Time 5

TV Y Y Y T Ir Y T YT TT TV Y v e ey Yy

;Le=0.5

<T> Le-15 ;

034 i
0 Time

Fig.1. Evolution with time of the mean concei-
tration (upper Fig.) and of the mean temperature
(lower Fig.) computed by the D.N.S. for two values
of the Lewis number

11 MODELISATION

Two models for turbulent combustion have been
used. The one which combines the presumed p.d.f.
model to the lagrangian equations, where the com-
bustion is supposed to be sudden, and the other
based on the transport equations for p.d.f. with a
curl’s closure for the mixing term.

1. NEW PRESUMED P.D.F. MODEL:
» AUTO-IGNITION”

1.1)

We used here lagrangian equations derived from
LE.M. model for a homogencous isotropic turbu-
lence field as :

i C-C

5 =‘T—e;—‘+IV(C) (6)
d¢ _9-¢
i (7)

Assuming that the reaction is sudden, the trajec-
tory is formed by the line Al IS and SB in the
phase space (Fig.2). Iis a point on AM that we
determine by

Cr ~C = 1 |W(Ch)] (8)

7. being the turbulent exchange time in the medium.
This is an implicit relation that permit us to deter-
mine €y, function of r.., of the chemistry and of C.
We could see it's solution by the line 1 in Fig 3.

The point S is supposed to be near zero: W(C.)=(C-

C,)/re: (see the line 2 m Fig.3).

)

ﬂk A

S — ~°’/

i 1

) ( M

0 l» C
B T 1

Fig.2. Phase diagram of the L.LE.M. model

T-C
) T, <
W(C) f Tex s

3

Fig.3. Plot of the different solutions for the Eq. (8)
depending on the value of the exchange time 7.

If r,, is small enough, - is too high and the
slope does not permit us to find a C, near zero,
only C, near C exist (see the line 3 in Fig.3). That
implies that there exist a certain value of 7., func-
tion of T and of the chemistry for which there i
no inflammation. For this case, we represented
the form of the p.d.f. by the ones of Fig.4 (see

22-3-2




H.J.Moon et al (1989)). and W is calculated with
L W(C)P(C)C.

H0

Fig.4. The 4 presumed shape of the P.D.F. in the
initial model

In the case where 7., > 77, we have proposed
new presumed p.d.f. that resembles to the p.d.f. of
rer < 71 but with a slight difference. 7, represents
the case when the line (C-C)/# 1s adjacent to the
curve B(C). For 0 < C < C; we assumed that there
is no presence of the probability for C since after
the ignition, C is consumed infinitely fast. Three
parameters depending on C. T are needed to de-
fine the form of p.d.f. d1,b.d0 for the shape (1) and
dl.b, and Cy for the shape (2) (see Fig.5).

a dt (1) P (2)
d0 do
BN b

Ly
AEFRCF e %, ¢, ¢, ¢

Fig.5. The 2 new shapes of the P.D.F. used when
Ter > TI

The governing equations for homogenous. isotiopi.

incompressible turbulent reactive flows are.

a.
D!

T 9
7 {9)
e} —_—
az 2 +20'W (10)
dt
where, ¢ = DZ4C. For the modelling of the

dissipation rate of C.¢,, we have assumed a direct
proportionality between the dissipation time scale
for the turbulence kinetic energy and the variance
of fluctuations of a reacting specie (7., ), which

'iCldS, €c = € - Cn cZ
x

Te T

1.2.) CALCULATION OF W AND ¢'W

the calculation of W with W (C)P(C)dC is not
so simple as it appears since if we suppose C, and
P(C) =0 for 0 < ¢ < ¢; we will have an indetermi-
naticn. In fact, for ¢ = ¢, ,we have W( Co)=5
and as C,~(, we have W(C)~C/r., that resolve the
indetermination in C=9.

For the reaction rate, we have

; ¢ T-C 1dC~ [
WO = - = = =B - = ()

since T is on AM

Pen=PONG: =1TTSRC) ()

and as on Al there is no reactiou (or very httle),
and by integrating the previous equation with the
assumption that the trajectory is very flat between
I and S, finally, we obtain :

= C pr—-41-C
Wae-—Zgp- L ¥Y27% 1
Ter 40 Tex 1-—8[)(01)01 (13)

Where d0 and P( C1)(=b) is given by the form of

P(C). To calculate ¢'1V we use the same principle
and we have

il

Ter

C;-C

'y = d0 — -—-——-P(C,)C’;(—Ci -0) (14)
Tex 2

2. CURL'S CLOSURE

The Curl's model is expressed by a transport
equuation for the p.d.f. In the homogeneous 1cac ting
flow considered hiere, the evolution of the probabil-
ity is given by

apCc) @

ot = POy

1
2 / P(C +C")P(C - C')dC' —wP(C)  (15)
0

(See R.L.Curl (1963), S.Pope (1982), P.A.McMurtry
and P.Givi (1989)) where o is the appropriate tur-
bulence frequency. This equation is valid only in a
homogeneous mediam, with mean velocity zero. In
the Bq.(15), the 1°* r.h.s. term is the reactive term
which represents a convection term in the proba-
bility space while the 2" r.hs. term is 2 molecu-
lar diffusion term which destroys the fluctuations
also in the probability space. The resolution of this
equation is done by the method of Monte-Carlo and
we have used the method employed by C.Dopazo
[1979]. C./rrdtN particles are randomly selected
~ut of the N particles representing the scalar p.d.f.
«t time t and they are mixed by curl’s procedure;
C. bemg a closure constant. Each of the particles
present on the flow will evolve independantly by
the p.d.f. transport equation That is the main
difference between this model and the presumed
p-d.f. which is based on transport equations for
mean variables.

IIT RESULTS

1)

We have used the samne initial conditions of Di-
rect Numerical simulation and compared the ie-
sults’ The initial conditions of D.N.S and the pre-
sumed p.d.f. model:

C=0.78, €72=0.030, r7,=2.0.

The initial conditions 6f D.N.S and the curl’s model:

C=0.78, C7=0.017, r;,=2.0

where 77, is the initial turbulence characteristic
time.
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The curve marked A represent the Direct Nu-
merical Simulation and B the models. The com-
parison with the presumed p.d.f. model is shown
at the left side and the curves at the right side cor-
respond to curl’s model (see Fig 6). Except the
evolution of the C7 with time for the presumed

p.d.f. model, T(t) and W(C) seem to fit quite well
the evolution of Direct simulation.

The agreement of coalescence/dispersion model
with the Direct Simulation is very good. In this
case, the better concordance is obtained for a value
of C.=2.5.

<&/

<C'2>: A

08

<C> | A,B

o) t 55

05— - ¢

<W> A

015

\‘,,_,‘
e

<C>|

0.5 — g)

<W>|

o ... >
o t 8.5

Fig.6. Evolution versus time of the scalar variance
(cu'rve a,d), the mean scalar (curve b,e), of the re-
action rate (curve c,f). A holds for numerical sim-
ulation, B holds for model in this set of curves. For
the curves ¢ and d, C means a reactive scalar which
evolves without any turbulence. The set of curves
_(a,q,?) is for the evolution computed by the P.D.F.
ignition while the set (b,d,f) is the results of the
Curl’s model.

2)

If we compare qualitatively (Fig.7) the shape of
the P.D.F. computed by the direct numerical sim-
ulation and the shape of the presumed P.D.F., we
can note that the presumed P.D.F. shape approx-
imate fairly well the one’s of the numerical sim-
ulation. The time evolution of the shape of the
P.D.F. computed by the direct numerical simula-
tion shows clearly that a hollow appears in a range
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of values of C; this justifies the correct prediction
of < C >, <C?> and < W >. This new nresumed
P.D.F. depends more on the chemistry (with the
introduction of C; in the shape)than the precedent
P.D.F. This new P.D.F. allow to better represcat
the effect of the chemical reaction.

01 ,& Qi d)

a)
) A

o1 Oy )

o
o

O
ks

01 ¢) 0.111 f)

Fig.7. P.D.F. of the reactive scalar for different
times computed by the D.N.S. compared with the
P.D.F. constructed with rectangle and Dirac.

On the Fig.8, we have plotted the position of
the particles which are used to solve the equation of
transport of the joint P.D.F. P(C,¢) by the method
of Monte Carlo. We can see the width of the P.D.F.
by the spreading of the dots and its value by the
density of the dots. As time goes on, the mean
value of the inert scalar is conserved while the mean
value of the reactive scalar decreases toward zero
The joint P.D.F. computed by the direct numerical
simulation are very similar to the one’s computed
by the Curl’s model.
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Fig.8. Joint P.D.F. of the inert scalar ¢ and the
reactive scalar ¢ computed by the Curl’s models
for different times.
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Fig.9. Evolution versus the Damkohler number of
the constant of the 2 models.

3

) The Fig.9 shows the evolution of the constant
¢d used in the model of the P.D.F. ignition and the
constant Cc used in the Curl’s model for different
Dambkoler number.The definition of the Damkohler
number is Da = r,, /7, where 7, is the initial charac-
teristic turbulence time . This characteristic time
is the same in all the case in order to have the same
evolution for the turbulence. During the compara-
ison between the models and the direct numerical
simulation, the 1alue of the constant (Cd or C.) is
kept really constant. But, to obtain fairly good
comparaisons between the models and the simula-
tion, these constants must be modified when the

Damkoéler number varies. In a turbulent reacting
medium, the ratio r,/r, where 7. is a characteris-
tic turbulent time of the reactive scalar field, has
not always the same evolution with time. This
fact explains why the constant is dependant of the
Damkoler number.

IV CONCLUSION

The work described here give us interesting in-
formation on the agreement of models with regard
to the D.N.S. The evolution of the mean scalar val-
ues C ,C, W agree well in both the two models.

In the two models, appear a characteristic ex-
change time. The investigation we have made in
order to study the influence of the Damkhoéler num-
ber demonstrates that the characteristic exchange
time is dependent of this number since we have to
change the constant when this number changes.

In the comparisons presented here, the con-
stants are not time dependent. With the D.N.S. we
found that they are not really constant with time.
Rather than using the characteristic turbulent ve-
locity time, it would be better to use a character-
istic time evaluated by the characteristic turbulent
scalar field since the ratio between the two times
vary with time for a reactive flow. For that, it
is necessary to solve a scalar dissipation transport
equation in the models.
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ABSTRACT

The problem of tirne discontinuity (or jump condition) in
the coalescence/dispersion (C/D) mixing model is addressed
in this work. A C/D mixing model continuous in time is
introduced. With the continuous mixing model, the process
of chemical reaction can be fully coupled with mixing. In
the case of homogeneous turbulence decay, the new model
predicts a pdf very close to a Gaussian distribution, with
finite higher moments also close to that of a Gaussian dis-
tribution. Results from the continuous mixing model are
compared with both experimental data and numerical re-
gults from conventional C/D models.

1. INTRODUCTION

Accurate prediction of turbulent reacting flows requires
the solution of an evolution equation for the probability den-
sity function (pdf) of the thermo-chemical variables using
Monte Carlo simulation. Sinze the pdf equation, like most
equations describing turbulent motion, is not closed, closure
models have to be devised. For the par of scalars, the terms
in the pdf equation that need modeling are molecular mixing
and turbulent convection. The present work deals with the
modeling of molecular mixing.

Most of the mixing models are based on the coales-
cence/dispersion (C/D) model by Curl (1963). This model is
known to have deficiencies, and efforts had been made to cor-
rect these deficiencies, for example, Janicka, et al. 1979 and
Pope 1982. The most recent efforts have been devoted to the
problem of coupling between mixing and chemical reaction.
Chen and Kollmann (1991) proposed a reaction conditioned
model that allows correct prediction of combustion in the
flame-sheet regime. Norris and Pope (1991) proposed a new
model based on ordered pairing that aimed at the same end.*

All the existing models suffer in one respect, namely,
they are discontinuous in time: once a pair of particles are
chosen to participate in mixing, their properties will jump
abruptly regardless of the step size of the timu integration.
This phenomenon, clearly non-physical, could cause difB-
culty in coupling the processes of mixing and chemical re-
action. In the present work, a new model that is continuous
in time is proposed. With this new model, the processes of
molecular mixing and chemical reaction can be fully coupled.

In the case of homogeneous turbulence decay of a scalar,
one expects a Gaussian distribution for the pdf, and finite
values for the higher moments. Pope (1982) pointed out the
modified Curl mode! could not produce the correct pdf for
this problem, and the higher even moments from that model
tend to infinity; he suggested an age biased sampling process
to overcome these shortcomings. The present continuous

model, as we will show, predicts a pdf distribution very close
to Gaussian for homogeneous turbulence decay, and gives
finite higher moments w.th values close to that of a Gaussian
distribution.

The continuous mixing model is applied to the study
of both non-reacting and reacting flows, and the results are
compared with earlier calculations by Hsu (1991) as well as
with experimental data.

2. MOLECULAR MIXING MODELS

The evolution equation of a single point probability den-
sity function of scalar random variables y,...,%, — repre-
senting the species mass fraction and temperature — can be
written as

- -~ N et
pagP 4 ﬁﬁaaap + ﬁzaw.{wt('/’l"",‘/’N)P}

=1
= - 9,

(7 < valén(z) = ¥ > P)
N N
= PX Y O, (< &loulz) = i > P) (1)

1=15=1
where the terms represent the rate of time change, mean con-
vection, chemical reaction, turbulent convection, and molec-
ula: mixing, respectively; P is the density-weighted joint pdi:

P= pP/[p, (@)
¢ is the scalar dissipation:
€y = Daa¢|aa¢1) (3)

(where D is the diffusion coefficient), and < z|y > denotes
the mathematical expectation of a random function z con-
ditioned upon y.

The left band side of the above equation can be evalu-
ated exactly and requires no modeling; the right hand side
terms contain the conditional expectation of the velocity
fluctuation and the conditional expectation of the scalar dis-
sipation, which are new unknowns and require modeling. In
the present work we concentrate on the modeling of the sec-
ond term, namely, the conditional expectation of the scalar
dissipation, referred to as molecular mixing in the following.

2.1 The Modified Curl Model

The simplest and most used mixing model is the modi-
fied Curl model, which assumes binary interaction between
sample fluid particles. As described by Pope (1985), in a
Monte Carlo simulation, the continuous pdf is replaced by
delta functions

1 N
P (g;t) = I z—:l 5y~ ¢n(t))) (4)
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where each delta function represents one sample fluid particle
of an ensemtle of N particles. The evolution of P* entails the
movem:nt of the particles in the ¥)—space, or the evolution
of the individual values of ¢,’s.

With the modified Curl model, the change of ¢, due to
molecular mixing is achieved by the following binary inter-
action process: divide the flow domain into small cells, each
containing N sample particles. Given a small time interval
8t and a turbulent time scale 7, select randomly Np,. pairs
of particles,
6t

Npe = 0'501"

N, (5)

(C =6.0) and let a pair, say, m and n, mix as follows

$n(t + 61) Adn(t) + (1= A)én(t) (6)
Pm(t+6t) = Adalt) + (1 - A)dm(t) M
where A = 0.5¢, with £ a random variable uniformly dis-

tributed on the interval [0,1). The remaining N — 2Nm,
particles remain unchanged:

¢n(t + 6‘) = ¢n(t) (8)

This model does not represent the true physical process
since the properties of the sample particles change discon-
tinuously regardless the size of the time interval 6t. This
deficiency can be best illustrated by rearranging eq. 6 and
dividing it by 6t

W(t+6t) — da(t)) A
G+ Bl . 20 -0u) )
The derivative éﬁﬂ does not exist because as §t goes to zero
the right hand side of the equation becomes infinite since
both A and the difference between ¢,,,(t) and ¢, (t) are finite.
This means that there 1s a sudden jump in the value of the
scalar quantities, which is typical of a Poisson process, but
is non-physical in the present case since the flow properties
of turbulence are continuous.

2.2 Continuous Mixing Model

One can see from the previous section that the modified
Curl model relies on the parameter Ny, to control the ex-
tent of mixing. On the individual particle level, it assumes
complete mixing once the particle is selected as one of the
mixing pair, without considering the size of 6t.

In order to achieve continuous mixing, we propose the
following model: during a time interval 6, we assume that
all the particles within a cell participate in mixing. The
extent of the mixing is controlled at the individual particle
level. That is to say, the N particles within a given cell are
randomly grouped into N/2 pairs; the properties of all the
particles change according to eqs. 6 and 7. The extent of
mixing now has to be controlled at the individual particle

level through the parameter A, which is redefined as

.0t
A=Cle= (10)

where C' = 2.0. With this new definition, eq. 9 can be
written, in the limit 6t — 0,

ddn

_ ot
28 = 0 (g ) = dn(t). (y

The above equation states that the change of ¢, due to mix-
ing is proportional to the difference between ¢y, and ¢y, and
inversely proportional to ti.e turbulence time scale 7.

2.8 The Coupling of Mixirg and Reaction

The processes of mixing and chemical reaction are es-
sentially decoupled when one uses the discontinuous C/D
models. In contrast, with the above continuous model, cou-
pling become natural since, for a given particle, mixing and
chemical reaction can be described with a single equation:

d¢n /f )
‘:i‘t“ =C 'T'(¢m(t) - ¢n(t)) + Wa, (12)

where w,, is the chemical source term.

Since the continuous mixing model allows full coupling
of the reaction and mi«ing processes, the C/D model with
reaction zone conditioning by Chen and Kollmann (1991)
can be easily implemented in the present model to simulate
the fast reaction in the flame sheet regime. Here a modified
finite difference vers'on of eq. 12 has to be used since w, is
infinity ip case ot 1ast reaction.

3. RESULTS AND DISCUSSIONS

The continuous mixing model described in the previous
section has been validated using both non-reacting and re-
acting flow test cases. The results and their comparisons
with earlier calculations (Hsu, 1991) using the modified Curl
model as well as with experimental data are presented in this
section.

3.1 Homogeneous Turbulence Decay of a Scalar

The case of decaying fluctuation of a passive scalar in ho-
mogeneous turbulence is used to test the continuous mixing
model. The initial condition is

, 1 [N N
P‘(tp;t):N SéW-1)+ Y dw+1)|, (13)
n=1 n=N/2+1 K
that is, in the Monte Carlo simulation, half of the particles
are ascribed the value 1, and the other half -1.

The pdf distribution of the normalized variable (¥— <
$ >)/o, where < ¢ > is the mean and o is the standard de-
viation, in the homogeneous turbulence decay problem con-
verges to a single curve after certain time, and the correct
distribution should be Gaussian, Fig. ' and 2 are the pdf
distributions from the modified Curl model and the present
model, both compared to a normal distribution. One can
see that the pdf from the modified Cur! model deviates con-
siderable from Gaussian, while the result from the present
model is fairly close to a Gaussian distribution.

The evolution history of the rms and fourth and sixth
moments of the scalar fluctuation are calculated using both
the modified Curl model and the present wontinuous model.
Fig. 3 shows the results from the modified Curl model. One
can see that although the rms from that model behaves well,
the fourth and sixth moments grow quickly out of bound,
oscillating at a level several order of magnitudes higher than
the value of Gaussian distribution. These results are similar
to what Pope (1982) had observed. Fig. 4 shows the re-
sults for the same set of quantities from the present model.
The rms behaves similar to that from the modified Curl
model. The fourth and sixth moments, on the other hand,
are quite different from those of the previous model; they
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rise smoothly to the value predicted by Gaussian distribu-
tion. Although the values do not seem to converge, they
remain finite, and are of the same order of magnitude as
that of the Gaussian distribution.

The above shown results clearly showed the advantage
of the present model over that of the modified Curl model.
Pope (1982) had devised an age biased scheme that achieved
the same end, which required an additional variable, namely
the age of the particles, and two extra adjustable parame-
ters. In contrast, the present model needs no extra work or
parameters.

3.2 Heated Turbulent Jet

Extensive experimental results for a heated turbulent
plane jet have been reported by many authors (Bashir, et al.
1975, Browne et al., 1984, Uberoi and Singh, 1975, Jenkins,
,1976, Antonia, et al., 1983). The turbulent jet has a slightly
higher temperature than the ambient. Measurements of both
the the mean temperature and the rms of the temperature
fluctuations were given. We compared the solutions for the
heated turbulent jet from the new model with experimental
data as we'l as with previous sclutions (Hsu, 1991) obtained
using the riodified Curl model.

In the present study, a combined CFD—Monte Carlo
algorithm is used. The mean flow field is obtained by solving
the Navier-Stokes equation and a two-equation turbulence
model using a finite difference scheme. The temperature
is treated as a conserved scalar and simulated by the pdf
equation.

Fig. 5 shows the comparisons of the the mean tempera-
ture distribution from the pdf Monte Carlo simulations and
experimental data from various authors. The figure shows
that both mixing models predicts the mean temperature dis-
tribution accurately.

The results for standard variation, or rms, of the tem-
perature distribution are given in Fig. 6. Although the two
solutions do not show significant difference, the new model
seems to agree slightly better with the experimental data.
The skewness and the flatness, i.e., the third and fourth mo-
ments of the temperature fluctuation, are given in Figs. 7
and 8; the comparisons show that in the present case of a
turbulent jet the statistical behavior of the new model is
similar to that of the modified Curl model.

3.3 Hydrogen-Fluorine Diffusion Flame

The continuous model has been applied ‘o the H,—
F, diffusion flame studied earlier by Hsu (1991). The flow
conditions are set according to an experiment performed by
Hermanson and Dimetakis (1989). The flame consists two
streams. The upper stream contains 96% of N, and 4% of F;,
the flow velocity is Uy = 22 m/s; the lower stream contains
96% of N; and 4% of Hj, with velocity U; = 8.8 m/s. The
estimated Damkohler number is ranged from 25 to 130 (Her-
manson and Dimotakis, 1989), and a fast chemistry model
is deemed appropriate in the calculation. Again a modified
version of eq. 12 is used to accommodate the fast chemistry.

Fig. 9 shows the temperature rise due to combustion. In
the figure, 67 is the sheaz Jayer thi- kness determined by 1% of
the temperature rise, AT is the & stual temperature rise due
to combustion, ( the two streams have the same temperatures
initially,) and AT,y is the adiabatic flame temperature as-
suming complete reaction. Details on the flow conditions can
be found in Hermanson and Dimotakis (1989). The agree-

ment between numerical predictions and experimental data
is fairly good, and a comparison of the results from the con-
tinuous model and that from the modified Curl model shows
that both performed well for this case.

8.4 Combination with Reaction Zone Conditioning

Chen and Kollmann (1991) developed 2 mixing model
based on reaction zone conditioning, aimed at the coupling
of reaction and mixing. We have shown in Section 2.3 that
with the present model, the processes of reaction and mixing
can be fully coupled; therefore it is only natural to apply the
reaction zone conditioning suggested by Chen and Kollmann
here.

The H,—F; diffusion flame problem is reformulated
such that the chemical reaction is confined to a very narrow
zone near stoichiometry. By applying reaction zone condi-
tioning to the continuous mixing model, we were able to pro-
duce a scatter plot of the temperature vs. mixture fraction
in which all the points reached the equilibrium temperature.
This 1esult is shown in Fig. 10. The mixture fraction here
is defined as the molar concentration of fuel divided by the
total molar concentration, and stoichiometry is located at
=105

4. CONCLUSIONS

A turbulence mixing model that is continuous in time
has been introduced. The deficiency of non-physical jump
condition in the mixing process is removed in the new model.
It has been shown that the new model is superior to the exist-
ing modified Curl model (Janicka, et al., 1979) in that it can
predict a Gaussian distribution and finite higher moments
in the case of homogeneous turbulence decay; it has accom-
plished what the age biased sampling scireme (Pope, 1982)
is designed for, without the extra parameters rsquired by
that scheme. The numerical results from the present model
compare well with experimental data
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Figure 5. Mean temperature in heated plane jet. — contin-
uous mixing model, - - - mod:fied Curl model, A Browne et

al. (1984), O Bashir and Uberoi (1975), o Uberoi and Singh
(1975), o Jenkins and Goldschmidt (1973).
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Figure 6. RMS of temperature variance in heated plane jet.
— continuous mixing model, - - - modified Curl model, ¢
Antonia et al. (1983), o Bashir and Uberoi (1975), & Uberoi
and Singh (1975).
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Figure 7. Skewness of temperature variance in heated plane
Jet. — continuous mixing model, - - - modified Curl model.
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Figure 9. Temperature rise in an H,~F, diffusion flame.
— continuous mixing model, - - - modified Curl model, o
Hermanson and Dimotakis (1989).
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Figure 10. Joint pdf between temperature and mixture frac-
tion on the centerline of the H,~F; diffusion flame; reaction
is restricted to a narrow zone at stoichiometry; results are
obtained by applying reaction zone conditioning (Chen and
Kollmann, 1990) to the continuous mixing model.
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Abstract

The present paper addresses a number of issues of relevance to
the modelling of turbutent gaseous explostons  These include the
removal of cold front boundary problems which may lead to a
numerically induced transition to detonation and the formulation of
sufficlent temporal and spatial resolution criteria to eliminate or
substantially reduce numerical inaccuracies This is accomplished
by comparing the results of transient computations with the resuits
from the solution of the corresponding steady problem using an
eigenvalue technique. A reaction model ghving good agreement
with measurements of turbulent burning velocities is derived on the
assumption that as first approximation flames exhibit a fractal
behaviour at high turbulence Reynolds numbers it is shown that
with an inner cutoff based on the Kolmogorov scale and a fractal
dimension of 7/3 the turbulent burning velocity 1s dependent upon
the ratio of the laminar burning velocity and Kolmogorov velocity

Introduction

Turbulent gas explosions exhibit complex behaviours and are very
sensitive to interactions with obstacle induced shear layers and re-
circulation zones The types of flames under consideration can
readily be produced under laboratory conditions in fuel-air
mixtures in the presence of obstacles e.g Lindstedt & Michels
(1989) A panticularly interesting feature of these flames is that they
propagate for long times at around sonic velocity prior to transition
to detonation. This kind of behaviour has also been observed in
field scale trials  To mode! turbulent flames under these conditions
is very demanding Firstly, turbulence Reynolds numbers are
frequently very high and estimates of Karlowitz numbers based on
the Kolmogorov scale indicate that these are exceeding unity by
order(s) of magnitude. Furthermore, if the transition to detonation
(DDT) is to be considered then direct kinetic effects must he
included. in the present study auto-ignition effects are not treated
and only processes leading up to DDT are considered

Despite these difficulties the area of modelling of turbulent gaseous
explosions has received a fair amount of attention due to the
obvious practical implications e.g. Hjertager (1982) However, unti
recently surprisingly little effort has been directed towards
investigating the numerical behaviour of the most frequently
utilised reaction models - versions of the Eddy Break Up mode! -
under conditions typlcal of confined premixed flames and gaseous
explosions Furthermore, while many modifications to these
models have been suggested, the Implications of such
modffications on the resulting turbulent burning velocity and their
numerical behaviour has received little attention Catlin & Lindstedt
(1991} have shown how a general eigenvalue technique can be
applied to investigate the behaviour of turbulent reaction models
and have defined the requirements in terms of flame resolution and
Courant numbers for transieni numerical computations necessary
to ensure well behaved solutions for the standard BML form, e.g
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Cant & Bray (1989), of the Eddy Break Up (EBU) model. In addition
it was noted that common modifications to this reaction model
frequently introduced to ensure uniqueness of the numerical
solution, such as switching off the reaction rate below some (small)
value of the reaction progress variable, will have large effects on
the predicted turbulent burning velocity. For example a cutoff set at
a value of the reaction progress variable of 0.01 will result in a
reduction in the predicted turbulent burning velocity by around
40% with the use of standard modelling constants The case
treated In the analysis by Kolmogorov et al (1937) which is
applicable in the case where the flame front merges with the cold
front, e g in the absence of a diffusion zone ahead of the flame,
was found not to be attainable in transient numerical computations
due to cold front boundary problems However, with carefully
controlled computations translent solutions In good agreement
with the eigenvalue analysis can be obtained even with cold front
quenching criteria reduced to within an order of magnitude of the
truncation error hmit The complete removal of cold front
quenching criterla and/or Inappropriate temporal or spatial
resolution of the flame was shown to lead to a limiting case of a
numericaliy induced Chapman-Jouget detonation in a constant
turbulence field.

In the present paper past work is extended in two ways, (i) the
elgenvalue technique by Catlin & Lindstedt (1991) is applied to the
formulation of a turbulent reaction model based on the
presumption of a fractal behaviour of turbulent flames at large
turbulence Reynolds numbers and (ii) transient flames are studird
in a decaying turbulence field

Governing Equations

The current paper considers the customary Navier-Stokes
equations in Carteslan geometry along with a fuel mass fraction
equation and an energy equation written in terms ot the total
internal energy, e g incorporating chemical bond energies The
mass conservation and momentum equations may be written as,
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The turbulence model is the standard k - ¢ model 8g Jones &
Whitelaw (1982) with a modification to the ¢-equation introduced to
account approximately for rapid distortion as suggested by Morel
& Mansour (1982).
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The modeling constants in the above equations have therr standard
values as defined by Jones & Whitelaw (1982) and Morel &
Mansour (1982) eg Cy=144, Cp=192, C3:033, C,=009,
ox=100and o, = 1.22 The scalar equations may be written in the

general form as,

2 *5";{5 G|8}= 5";{,, u[¢'} oS O

If the assumption of a uniform mixture with no change in mean
molecular weight is introduced along with the assumption of
gradient transport the source term and the flux terms in the energy
equation may be written as,
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The turbulent Prandtl and Schmidt numbers have been assigned
values of 0 75. The ratio of specific heats (y) is assumed constant
at 13. Gradient transport is also assumed for the fuel mass
fraction flux,

o Ky aYFu

p U|YFU = - ;; _—ax' (10)

For ease of discussion the reaction progress vanable is introduced
and is in the present work defined as,

S =1 - \7FU/YF"u ()

It should here be noted that i the general case the .eaction
progress variable is a function of the local mixture fraction (f) as
well as the focal fuel mass fraction However, in the present case of
a homogeneous mixture the mixture fraction equation need not be
solved The source term in the fuel mass fraction equation is
discussed in detall In the section below. It has further been
assumed that the fuel (methane) undergoes a one step reaction as,

CHy + 02 ------- > C02 + 2H,0 (12)

Thermodynamic data have been evaluated using JANAF
polynomials. The final temperature in the products Is 2340 K giving
an expanslon ratio (r = T; /T, - 1) across the flame of 6 85

The above equation set is solved as appropriate using a version of
the PISO algorithm with a variable number of implicit correctors
and with fult splitting error control e.g Catlin & Lindstedt (1991).
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Reaction Model

To formulate a suitable reaction model for a strongly turbulent
deflagration i1s a demanding task As discussed above it has been
shown that numencal problems can readily be removed from the
BML form of the EBU reaction model and that the ur a U’ link can

be maintained in transient computation in a constant turbulence
field with values of u' in excess of 25 m/s - a necessary
requirement for explosion modelling However, even with the
removal of numerically Induced difficultics it is clear that the
turbulent burning velocities predicted by this model are in
substantial error in regions of high turbutlence As a result
modifications have been suggested to the EBU model which
account for quenching effects at high turbulence levels For an
excellent and recent review see Bray (1990) One of the most
interesting frameworks for deriving modifications to the EBU modet
was suggested by Gouldin and co-workers (1989) who introduced
an expression based on the assumption of a fractal behaviour of
flames at high turbulence levels. The suggested rate expression
may readily be re-written in Favre averaged quantities as,

X

pRe = CEBUp u [‘K

02 (1 +9) E(-E) (1)

(1+78) o

in the above expression |, and |, are the integral and Kolmogorov
length scales respectively, u_ the unstrained (or strained) laminar
burning velocity and 8y a measure of the thickness of the turbutent

flame brush The term f 15 an empurical function which will not be
used in the present work and 1s thus not discussed further

It 15 not the intention to here provide a detailed discussion of the
applicabihty of fractal Lased models for turbuient flames it is
simply noted that at high turbulence levels there appears to be
general agreement between measurements (Mantzaras et al
(1989), North & Santavicca (1990)) and derivations based on
treating the flame as a passive surface (Gouldin et al {1989)) or as
a dynamic interface (Kerstein (1988)), that flames in high
turbulence are to a fist approximation fractai with a fractal
dimension (D) of around 2 33, However, it should be noted that at
low turbulence levels D may be as low as 2.11 A4s in the present
work only high turbutence Reynolds numbers are considered the
fractal dimension will be assumed to be 7/3

The turbulent flame thickness appearing in equation (13) above
can readdly be removed if it is noted that it Is essentially
proportional to the integral length scale in the cold flow The factor
or proportionality is largely dependent upon the definition of the
thickness of the turbulent flame brush but is almost without
exception in the range 1 to 10 Catlin & Lindstedt (1991) have
shown that this indeed holds for mixing controlled reaction models
after the removal of cold front boundary prot.lems. The transported
pdf computations by Anand & Pope (1987) also give a turbulent
flame thickness proportional to the integral length scale in the cold
flow with the addition of a linear dependence upon the expansion
ratio (7) across the flame Cunsequently, assuming &; = |, appears
to be an acceptable approximation and the revised reaction model
may at this stage be written as,

Iy %(1”) §(1-8) (14
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One further Issue which has been debated at some length Is the
appropriate inner cutoff of the fractal expression In eq (14) it has
been assumed that the inner cutoff corresponds to the Kolmogorov
scale. Peters (1986) have suggested that the Inner cutoft could
instead be proportional to the Gibson scale which will result in the
following rate expression,
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As the Gibson and integral scales are Jefined aslg = u® /¥ and |,

= 3/2 u‘3/‘5 respectively, it can readily be shown that under the
present assumptions the reaction rate source term reduces to the
standard BML form of the EBU reaction model,

__. !1 !
= Cgpyd [z]sé‘fﬁ; 2 ,Ic (16)

While the Glbson scale cutoff is attractive from a theoretical
viewpoint the above result appears at present not to be in good
agreement with experimental data even for moderate turbulence
Reynolds numbers Consequentiy, the present work adopts an
inner cutoff based on the Kolmogorov scale. Some experimental
support also exists @ g North & Santavicca (1990) that the inner
cutoff most probably is smaller than the Gibson scale Under the
simplifying assumptions above the reaction rate based on the
Kolmogorov scale cutoff may be written as,

oRg = Cegy b [v] [ ] [(1 + ) €(1-¢)

- 4
wherev, = (¥ ¢) (17)

This is an interesting result as it in essence Is the standard EBU
model modified by the ratio of the laminar burning velocity to the
turnover velocity of eddies on Kolmogorov scale. The implications
of this reaction rate expression are explored in the section below

One final point remains to be addressed. it is now well known that
the c(1-c) expression does produce cold front boundary problems
There are several ways of eliminating this numerical artefact In the
present work it has been assumed that reaction rate is zero below
a Favre averaged progress variable of 0 01 In the present work the
eigenvalue analysis by Catlin & Lindstedt (1991) is used in the
section below to analyse the behaviour of the above reaction rate
expression for vanations in turbulence properties, laminar burning
charactenstics and expansion ratios across the flame

Eigenvalue Analysis

An important distinction between the analysis by Kolmogorov et al
(1937) and the | <ent eigenvalue analysis Is that the restriction
that the first derlvaive of the reaction rate source term should be
non-zero as ¢ --> 0 is removed. This is particularly useful i the
current case as it enables more general turbulent reaction models
to be investigated As a starting point the above conservation
equations are simplified for a steadily propagating 10 planar flame
in an incompressible fiuid and a constant turbulence field to give,

9t 4| pdE) e
(Y, G5 = ax ["Sc dx] + pRg (18)

A simple coordinate transformation is now introduced as,

d u 1 d
o T 19
9t = o (ou) dx (19)

and the resulting equation may be written as
98188 | q
pradeT: + W(C) A (20)

If the effect of temperature on the laminar viscosity is taken into
account the resulting source Is,
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where the parameter 'n' has been introduced for reasons outlined
below. It shouid be noted that in equation (21) only the density
ratio across the flame appears The last term may be rewritten as
(with the turbulent burning velocity denoted uy = ug)

u
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% Yk

(2)
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Equation (20) above may readly be integrated using a Runge-
Kutta-Nystrom method and a binary search procedure applied to
determine the resulting eigenvalue The appropriate boundary
condition at the cold front is,

de
a—i = ¢, atthecoldfront (c, = 10% inthe present work)

Eigenvalues can readily be determined for a wide range of
parameters and be rolated to the resulting turbulent burning
velocity via equation (22). The dependence of the latter upon the
expancion ratio across the flame is the fist parameter to be
considered. The results obtained by the solution of equations
(20,21) for different values of 'n' are shown in Fig 1 where the
results have been normalised by the turbulent burning velocity
obtained with an expansion ratio (r) of 7 A comparison with the
resuit from the transported pdf computations by Anand & Pope
(1987) have also been included As can be seen it appears that
n=2 gives better agreement with the transported pdf computation
than the more commonly usad n=1 This is quite different from the
earlier version of the BML form of the EBU model used in the
studies by Cant & Bray (1989) and Lindstedt & Catlin (1990 for
which n=1 25 gives the best agreement

The final issue is that of the modelling constant Cgg; For the
exponent n=1 the data by Bradley and co-workers (1984), see
below, is fitted very successfully with this constant being equal to 1
while 0 67 improves the agreement further For the case n=2 which
gives optimal agreement with the transported pdf computations the
computed eigenvalue increases from 0104 to 312 As a
consequence the modelling constant is increased in proportion to
avalue of 20.

The agreement between the eigenvalue analysis and transient 1D
computations was first tested as a function of flame resolution

The approach to a steady limiting value for two fiames propagating
in an open ended flame tube 6m in fength can be found in Fig 2.
The flame tube was resolved by 1202 computational nodes and an
integral length scale of 0 25 m was specified along with u’' = 5 m/s
and u'=25 m/s respectively The turbulent burning velocities were
obtained from the transient computations by evaluating the
reaction integral across the flame and as an addtional measure the
results where checked by dividing the particle velocity ahead of the
flame by the expansion ratio (r). Ignition was obtained by
spacifying a hot gas pocket at ambient pressure. The turbulent
burning velocities In Fig. 2 have been normalised by those
determined from the eigenvalue analysis of 5.75 m/s and 15.7 m/s
respectively. The agreement at the end of the computation is very
satisfactory with errors less than 5% The effect of a reduction in
the resolution of the integral length scale was also tested for the
case of u'=5 m/s Resolution of the latter by 50, 25 and 12
computational nodes respectively, resulted in turbulent burning
veloctties of 1.65, 110 and 1.04 times the value obtained by the
eigenvalue analysis. The required resolution of the flame is
consequently roughly twice that necessary for the BML form of the
EBU model. Temporal resolution was ensured in the present study
by timiting the forward step to a maximum Courant number of 0.25
based on the particle velocity.
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Comparison with Measurements

One problem in evaluating any model for premixed turbulert
combustion is the absence of suitable expenmentai data The most
comprehensive set of data for one partcular geomety is that
comptled by Bradley and co-workers (1984) As the present study
is concerned only with methane - air fiames comparisons are made
with 3 flames of stoichiometries 0 75, 082 and 100 The lammnar
burning velocities required tor the above combustion model were
ohtained from the giobal teaction scheme by Jones and cindstedt
(1988) which gives laminar flame speeds of 0 25, 0 345 and 0 385
m/s for the above stochiometries The laminar viscosities also
required i the evaluation of the Kolmogorov velocity where
evaluated using a standard formnuiation,
-2
T 13

268

In Fig 3 the . v2asured turbutet burning velocities for the leanest
flame ($=075) are compared with the current model ard the
standard EBU model resulting from the assumption of an inner
cutoff corresponding to the Gibson scale As can be seen the
agreement between the current model and measurements is very
satisfactory until vaiues of u'/u; exceeuas 20 For higher turbulence

levels the agreement is not surpnsingly deterioraiing In Fig 4 the
agreement between tne present model based on normal
unstrained  laminar  flame  properties 15 compared  with
measurements Again the agrnement between the experiments anc
the current model ts surprisingly good However, at values of u /y;

n excess of 30 there is deterorating agreement with the measured
data The simpiicity of the present rbilent reacton model
formulation altows readily for the introduction of strained laminar
burning velocities into ecuation (17) To this end the strained
laminar burning velocities computed by Dixon-lews ang co-
workers (1990} for stoichiometric methane-ar flames are used
diractly with the assumption that to a first approximnation the strain
rate 1s proportional to the inverse cf the Kolmogorcv time scale
The result of this approximation 1s also shown in Fig 4 where the
line corresponding to the prediction based on the strained laminar
flame speed has been terminated at the extinction points of the
strained planar laminar flame (acz 2500 ,s) It shouid be noted

that the examction pont of tubular strained fiames 15 lower stil As
can be seen the agreement with experimeni.’ dala does not
improve and the indications are that the faminar flamos extinguish
much too soon This must cast some doubt on the valdity of the
inclusion of strained faminar flame cata In a simple manner into
turbulent flame computations, or alternatvely that the strainrate is
the appropriate parameter to consider Regarding extinction
charactenstics it Is well known that flames burning agamst burnt
products do display very different extinction charactenstics Thus
the agreement at least with respect to this feature is likely to be
much improved with the use of such data

o=

Hzo8

Importan: tssues do anse in the context of the applicabiity of the
type of model suggested here for highly turbulent flames
Evaluation of Karlowitz numbers based on the Kolmogorcv scafe
and the charactenstic reaction times of the fuel breakdown layer of
laminar flames yreld values significantly above unity even at very
moderate turbulence levels As a consequence It appsars
questionable to treat the flame as a passive surface under these
conditions Interestingly the form of the correction factor to the
EBU model derived above indicates a dynamic balance between
the faminar burning velocity and the Kolmogorov scates The
behaviour of the ratio of the latter is shown in Fig 5 where as an
example the case of a stoichiometric methane-air flame
propagating mto a turbutence field with an integrat length scale of
0.25mis considered At low turbulence levels e g u'/uj=1 the ratio
of u/vk 1s around 8 and hence strong flame acceleration i1s
predicted by the interaction with eddies on ihe Kolmogorov scale
However, at high turbulence levels the ratio goes significantly
below unity causing the observed decrease in the rate of burning
discussed above It must here be emphasised that the behaviour at
low turbulence levels is likely to be exaggerated due 1o the

assumplions made of an appropnate fractal dimension of 7/3
However, agreement between predictions and measurements
appear plausible even in this region

Transient Flames in Decaying Turbulence

In the present section the above reaction model 1s applied to two
cases, (1) whete an established flame is propagated into a
decaying turbulence field and (1) where a confined flame is ignited
in a decaying turbulence field The conditions chosen for the first
two cases correspond to a moderately strong flame resulting from
values of u' of § m/s and an initial turbulence length scale 025 In
the first case a flame is propagated in a constant turbutence field
for a sufficiently long time to establish a nearly steady flame (t u'/l;

= 08) after which the turbulence field is allowed to decay. The
ftame intially slows down but then appears to approach an almost
steady propagation velocity at around 90% of that obtained in the
case of a constant turbulence field as shown in Fig 6. This result is
surprising and it appears that an increase in the ratio of the laminar
burming velocity to the wrnover time of eddies on the Ko'mogorov
scale partly compensates for the decay in U To attempt to
elucidate this bebaviour further a computation in which a flame was
ignited directly in a decaying turbulence field in a closed vessel
was performed  The result from this computation can also be
found m Fig & The interesting pont 1s that even for this case a
constant turbutent burning velocity appears to be approached at a
vatue of around 80% of that obtamed in a constant turbulence field
Further wwestigations are required to clanfy the reasons for this
behaviour 1t can be noted that direct simulaticns by El-Tahry et al
(1991) also obtain results which show that a flame ignited in a
decaying turbutence fiela approaches a burning velochy similar to
that of the flame in the conesponding steady turbulence field This
indicates that the results obtained :in the present study may not be
unreasonable

Conclusions

The reformulation of the transient flame propagation problem to a
form appiicable to steady flame piopagaton in a constant
turbulence heid ha. been used as a basis for an eigenvalue
analysis It has been shown that provided sufficient numerical
resoluticn of the turbulent fame 1s ensured excellent agreement
between transient computations and the eigenvalue procedure is
obtaned A turbulent react:ion model was derved based on the
assumption of fractal behavicur of flames at high turbulence levels
and comparisons with experimentally obtained turbulent burning
velocities give very encouraging results The effect of strain on the
laminar burning velocity has also been incorporated and it was
shown that some doubts exist ovar the appropnateness of .ne
inclusion of strained laminar fiame data in a simple manner Into
turbulent flame computations The computation of moderately
sirong flames in decaying turbulence fields show that the final
turbulent burning velocity appears to approach a similar value to
that obtained for the flame in the corresponding steady turbulence
teld
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Normalised Turbulent Burning Velocity
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Figure 1
Dependence of Turbulent Bumning Velocity
on the Expansion Ratio Across the Flame
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Figure 2

Turbulent Burning Velocity Normalised by
the Result from the Eigenvalue Analysis
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Comparison of Measured and Computed Turbulent
Burning Velocities with Predictions Based on
Strained and Unstrained Laminar Flames

UL/VK

uLVK
[4,]

U'/UL

Figure 5
The Ratio of »~minar Surning Velocity to the
Tutnover Velocity of Koimogorov Scale Eddies
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Compatison of Turbulent Flames Propagating in
Open and Closed Tubes in Decaying Turbulence
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Abstract

An experimental investigation of the Mach number effects i
two-dimensional far wakes is presented. Three regimes are
studicd: subsonic (Mach 0.1), Mach 2.0 and Mach 4 2, in the
developped part of the initially turbulent wakes. Hot wire
anemonmetry is used to give one point statistics and conven-
tional space-time correlations (STC). It is shown that, like
m boundary layers, the intermittent part of the wakes are
of less transversal extend 1 the supersonic cases. The spec-
tra are strongly modified m the vicimty of the axis. The
scales and the shapes of the STC aie also quite sensitive to
the Mach number. The supersonic wakes seems to be more
strongly structurated than the equivalent subsonic one, with
shight differences between Mach 2 and 4.

1. Introduction

The experimental knowledge of the compiessibility effects on
turbulent flows takes an increasing unportance; associated to
the recent developments of numerical piediction and to the
revival of industrial mterest 1n Ingh speed propulsion. More
preaisely, compressibility arising from the supersonic regime
should be adressed. Up to now, the influences of the Mach
number have been and are still examined experimentally in
details manly in the case of Boundary Layers and Jets or
Mixing Layers. For these kinds of flows, the compressible
character of the velocity fluctuation field can be invoked, in-
creasing considerably the difficulty of any numerical predic-
tion. The large scale behaviour of these flows is now assumed
to be play a crucial 10le. The structures of the flows and thier
evolution with the Mach number are impo:tant as well as for
the physical interpretation of the mechanisms as for the val-
idation of advanced numerical codes.

The present work deals with the study of turbulent far wakes,
in subsonic and supersonic external flows. For the small
deficit wakes, at the difference of the two other configura-
tions (iixmng and boundary layers), the ‘'ocity gradients
and the turbulence level remain very sme... This last charac-
teristic induces that a-priori the velocity fluctuations can be
condidered as quite incompressible, at least up to moderate
values of the external Mach numbers. These considerations
have to be kept in mind when analysing the differences be-
tween sub and supersonic wakes.

The study of supersonic wakes 1s indeed more delicate than
in the subsonic case. In particular when large scales are to be
investigated, the sophisticated analysis performed by several
authors (for example [19}, [12}, [2])) must be restricted to more
simple ones. The main approaches are visaulizations [6], 1]
and STC [11]. The results presented here are complemen-
tary measurements in the subsonic flat plate wake previuosly
studied [8] and in the M=2 wake (9] previously studied. In
addition, new results are presented in a M = 4 wake, allowing

to Judge the supersonic effects for higher Mach numbers. The
essential features of one and two points statistics, based on
high order moments, spec.ra and STC are presented.

2. Experimental apparatus

2.1 Wind tunnels

The supersonic measurements are performed in an open blow-
down wind tunnel of 150mm x 150mm test section, operating
at 6 and 14.10% Pa generating pressures (for M=2 and 4 re-
spectively). The blowdown tunnel has a maximum running
time of 1 minute. The temperatute decrease is measured and
less than 0.3 degree per second. The model is a full span flat
plate, placed without incidence in the axis of the wind tunnel
as described in Fig.1. The leading edge is located upstream of
the 2D interchangeable sonic throats to avoid parisitic shock-
waves. The local Mach number at this location is less than
0.85. The thickness of the plate is 3mm and the trailing edge
is a symmetric wedge of 3° total angle. The length of the
plate in the supersonic part is 0.8m. At the trailing edge, the
Reynolds numbers are of the order of 6.107; the boundary
layers are fully turbulent.

)
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Fig.1 - Fxperimental arrangement (supersonic) and
coordinates.

Subsonic ezperiments are performed in an open wind tunnel
of 30 x 30 cm? section, driven at a mean speed of 36 m/sec;
the length of the test section is 1.2 m; the model is also a
3 mm thick flat plate with the leading edge located in the
convergent region. Sandpaper is glued on the two faces of
the plate I m upstream of the trailing edge. The Reynolds
number based on the total length of the plate is of order of
3.10%. As for the supersonic cases, the boundary layers are
fully turbulent at the trailing edge, with a thickness of about
9 mm. The trailing edge is bevelled from 50 mm upstream
with 3% slope.

2.2 Hot-Wire anemometry

Supersonic hot-wire anemometry: The measurements are per-
formed in the supersonic flows with Constant Temperature
Anemometers specially adapted from DANTEC 55M01 /M12
symmetrical bridge (5} with 2.5um wires (0.5mm long). The
bandwidth at the high overheat ratio used (= 0.8) is greater
than 300kHz. As usual in supersonic flows, a small slack is




given to the wires in order to avoid strain-gage parasitic ef-
fects. Prior any use, each wire is checked and each anemome-
ter is adjusted m a small calibration wind tunnel reproducing
Mach, wire-Reynolds numbers and temperature characte. s-
tics of the measurements.

Due to compressibihity effects, 1t is well known that the su-
personic turbulent flows are charactenized not only by fluctu-
ations of velocity but also of density and temperature. The
hot-wire anemometer is sensitive to mass-flux fluctuations:
(pu)' and total temperature fluctuations: Tj. If the wire is
operated at high overheat ratio, it can be assumed that the
anemometer output is mainly sensitive to mass-flux [13]. The
constart-temperature operation allows, in addition, to accept
lineanty of the output in term of (pr). The mode diagram
technmique, allowing theoretically to separate the p and u con-
tributions {11] has not been performed here, due to the rapid
increase n resulting experimental complexity.

Two probes are simultancously used: ¢ne is kept station-
ary, and the traversing mechanism holds ! . moving probe.
The displacements are driven by steppir g motor with Imm
steps. The positions during the runs are optically checked. A
time dilatation of 16.1 is obtained by recording high-pass fil-
tered anemometers outputs on an analog tape recorder (Bell
& Howell M14G) with 2 (0-500 kHz bandwidth) channels and
two different veloaities: recording at 120 ips and reproducing
at 7.5 ips. Further digital sampling 1s performed at an equiv-
alent physical frequency of 800 kHz after a low-pass filtering
at 320 kHz, and a sample size of about 1 second.

Subsonic hot-wire anemometry The measurements are per-
formed by use of a home made rake of 23 subminiatures hot-
wires (dia. 2.5 pm, 0.5 mm long) and TSI 1750 anemometers
[10] The velocity signals are simultaneously sampled at a
rate of 50 kHz and for each channel 800 records of 1024 con-
versions are considered. For each wire 1, the instantaneous
velocity is related to the the anemometer voltage by a a cal-
ibration rule which can take into account the temperature
dnift of the mean flow' (To — T, ).6,% = a, + b,.ul™.

2 8 Numerical procedure

As well spectra as correlations are estimated by use of FFT
techniques The spectrum is then defined as E(Y;f) =
(@(Y;t)" 4(Y;t)) where () denotes the Fourter transform
and ( ) time average; indeed, u stands for pu in the su-
personic case. The space time correlation ry (Y, Y +3/,7) =-
(u(Y,t).u(Y +y/;t -+ 7)) is calculated from the inverse Fourier

transform of E, (Y, Y+, f) =Hyy 4o (f) (Y. )" (Y + ¢/;2))

where Hy,y,y(f) 15 the transfer function between the two
channels corresponding to the probes position Y and Y + y/.
This correction is needed only in *he supersonic case where
the experimental procedure involves analog storage of the sig-
nals for relatively high frequencies and is then very sensitive
to phase dnfts (due to possible head misalignements, etc...);
Hyy4,(f) is measured by using ca'ibrated signals. In this
paper, only the correlation coefficients R, (Y,Y + ¢/;7) =
reY,Y + o/ 1) [rHAY;0)/ri3(Y + /;0) are considered.

3. Results

3.1. Previous evidences of compressibility effects

in supersonic far wakes.

Systematic measurements of mean values in supersonic flows
have been previously perfuniued {4]. These results essentially
concern the mean velocity evolutions downstream of the flat
plate for Mach numbers of 1.6, 2., 3.3 and 4.2 The results,
when compared with the subsonic cases [15] [16], lead to the
following main conclusions [4]:

o The main defect velocity and wake thicknesses evolutions
are not strongly affected by the supersonic character of the
flow. However, the generation of the wake is predominant:

o' f(pt 12 —_—— subsonte Pot]
(@) o e
coo M=2 previous results
L M=33
P M{” 34 ) [Demetnades]
M=
b subsonte } present configuration
10
’./.‘
08
o
N ‘ : 5 v

Fig.2 - Transverse repartition of the longitudinal mass-
flux fluctuations.
as also quoted by Wygnanski, {19], the memory of the origin
of the wake persits far downstream.
¢ The initially turbulent thin flat plate wakes follow a down-
streain evolution that can be divided in three successive parts :
the near wake, the intermediate wake and finally the devel-
opped wake [16]. For the present experiments [4], [8], full
similarity is observed at Mach 2 and 4 and for the subsonic
wake, for dowstream distances g-eater than 300 momentum
thickness 4.
o Important compressibihity cffec ts have been evidenceded on
the transverse (y) distribution o " the energy of the longitudi-
nal velocity fluctuations.
The Fig. 2 shows the results obta ned in the above-mentioned
subsonic and supersonic wakes. For comparisons, subsonic
results of Pot [15] are presented, altogether with the super-
sonic measurements of Demetriades [11) (This author has,
since 1967, emphasized, this difference between subsonic and
supersonic wakes). More precisely, two main characteristics
can be pointed out:
i) The minimum/maximum ratio of the longitudinal velocity
fluctuations is smaller for supersonic wakes. (Fig.3a ); these
results translates a more important transverse evolution of
the turbulent activity in supersonic wakes than in subsonic
ones.
i} The location (Y;,) of the maximum of turbulent kinetic
energy is nearer the wake axis in the subsonic case (Fig.3b ).
Then, from the conventional one-point statistical properties,
the supersonic character appears to be influent on the dis-
tribution of the energy fluctuations. Some other results [4]
show that the structure parameter of the Reynolds tensor is
also affected by the Mach number.
This situation is different from the case of the boundary lay-
ers, where the influence of the Mach number on the statisti-

Y /(8/2)
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p 08l s
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04L
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L A > + L
00 2 4 M o0 2 4 M

Fig.3 - Mach number effect on the turbulence min/max
ratio and on the transverse location of the maximum
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cal properties scems very small. However, it has been shown
that the Mach number influences the shape of the other edge
(observable on lugher moments, skewness, flatness and inter-
mittency) and the shapes and characteristic lengthes of the
correlations [18]. On an other hand, the Mach number has a
tremendous well known effect directly on the speading rate
(see for evample [3]) and energy Aistribution {7} of supersonic
mixing layers.

Then, it appears that, from conventional statistics, the super-
sonic wakes behaves in a quite different way when compared
with others engineering basic flows.

3.2. Mean flows characteristics

The main characteristics of the 3 wakes under study are pie-
sented in Table 1. Up is the minimun (axis) mean velocity
value when U, is the external velocity; the wake thickness
1s defined as b, the distance between the two locations where
the velocity is (U + Up)/2. Y. is the transverse position of
the maximum of longitudinal velocity fluctuations, 8 is the
momentum thickness (6 = [ pU/Un(1-TU/Uy) dy). X is the
distance from the trailing edge where the detailed measure-
mer..s are taken, Y is the transverse location of the stationary
probe and ¥ is the transverse separation between probes All
the experiments presented here correspond to the far wake re-
gion, the dowstzeam distance being of order of the 500 to 600
momentum thicknesses.

M=0.1 M- 20| M=4.2

Uw m/s | 395 | 474. | 625
Uym/fs |36.8 436. 591
bmm 23.2 18.0 210

Y,, mm | 7.2 100 14.0

# mm 1.6 1.3 1.3

X/8 613. 4192. 638.
Reg 4.210°[1210%]0.98 10°
a deg - 62 58

Table 1

3 3. One-pownt statistics

The spectra of the longitudinal veloeity component (M=0 1)
or of the mass-flux fluctuations (M=2. and 4 ) are plotted
on Fig 4 for 3 locations within the wake' on the wake axis,
at the maximum of turbulence (Yy,) and at an intermediate
position (¥,/2). These spectra are plotted as fE(f) vs log f
(f 1s the frequency and E the power spectrum), the area un-
der each curve being proportional to the energy. No attempt
to normalize the energy is made, although the frequency 1s
normalized with b and the convection velocity U, , the con-
ventional characteristic scaling of far wakes (19, [2]. [9): U,
1s taken equal to the external velocity Us.

It can be observed that, in the internal part of the wakes,
the spectra do not seem to be strongly affected by the Mach
number. Whatever the Mach number is, sharp peaks lying
around fb/Us ~0.4-0.5 are clearly observable, showing that
structures of mean size of twice the conventional wake width,
b, may be present in the flows (assuming , as generally ad-
mitted, a convection velocity close to the external one).
Contrarily, on the wake axis, impertant differences between
M=0.1 and supersonic w.kes can be observed. Despite broad-
band spsctra, supersonic wakes are relatively more energetic
at higher frequencies. Practically they loose the lower typical
characteristic frequency behaviour observable in the external
part. In the center wake region of supersonic flows, typical
energetic frequencies lie roughly around fb/U, =1, i-e. twice
the typical frequency observed in the external part. Then, the
supersonic wakes seem to have larger spectral evolutions in
Y direction than the subsonic one does.

MBI et e o) e e e 7 e e e
b Eu(£)/(pu)y
oM=42
|M=20
* M =0.1
I
| Y
Y =
fo/Uy A
10-2 10'l 1;)0

Fig.4 - Energetic lin-log plot of the spectra for sub-
sonic, Mach 2 and 4 wakes on the wake axis, at ¥ = Y4, /2
and Y = Y,,. Arbitrary vertical scale, frequency values normal-
ized with U /b
This first remark is confirmed by the observation of the higher

moments. Fig. 5aand b preseng the skewness ((pu) "/ (pu)'23/2
and the flatness ((pu)*/(pu)? ) factors for the two extreme
Mach numbers and several Y locations. It can be observed
that the supersonic wake behaves in a quite different way that
the subsonic one. On the wake axis, the signals are positively
skewed in the supersonic wake (Fig. 5.a), this behaviour can
be the trace of locally higher velocities occurenc  *hat are
not observed 1 the subsonic wake.

On other hand, the skewness values are everywhere higher in
the supersonic flow, comparable values being observed only

T T T T T T | ! T
=3, ——5!

L (pu)”/ (pu) 4

M=42

. i
0 nh :

subsonic

D
T
i

o)’/ (o)™

Fig.5 - Comparison of skewness and flatness factors of
longitudinal velocity and mass-flux fluctuations in sub-
sonic and M=4.2 wakes
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for Y/b~1 The comparison on the Fig. 5.b shows here also
that the differences between supersonic and subsonic wakes
are real both on the axs (lngher flatness for the supersonic)
and in the external part.

The part of the wake where the signals are more or less gans-
sian is very small, even not prescnt, in the M=4 wake, con-
trarily of the subsonic one, where quasi-gaussian signals are
observed on nearly a half wake width.

As far as the intermittency can be estimated to be propor-
tional to the inverse of the flatness factor, it is evident that
the ntermittency profile of the supersonic wake is largely
fuller than for the subsonic equivalent flow. A comparable
Mach number effect is well known for boundary layers {14};
the measurements of Smits et al {18] show very close conclu-
sion in the comparisons of thiid and fourth order moments
in incompressible and supersonic (M=3) boundary layers.
34 Tuwo-pomnt correlation data

More detailed informations can be deduced from two-point
correlation; in the present experiments, only correlations with
transverse (3) separations are available Some results con-
cerning streamwise separations in the Mach 2 wakes can be
found in [9).

The principal results are obtained when the stationary probe
1s located at Y'=0, Y,,/2 and Y,,* the iso-countours on the
wake axis are plotted on Fig.6; the mid-position of the refer-
ence point is considere.l on Fig.7 and the maximum of fluctu-
ation is used for the 1csults of Fig.8. Let us recall that these
two last positions don't correspond to the same values of Y/b
for the different wakes, due to the strong influence of the
Mach number on the ratio Y,,/b (see Fig.2). This effect ex-
plains the increasing relative distance between the wake axis
and the location of the stationary probe observed between a,
b and ¢ on Fig.8 and 9
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Fig.6 - Iso—contours of the correlation coefficient Ry,
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These iso-contours plots show global equivalent characteris-
tice in shape on the axis despite important effects on the
relative sizes between the three configurations. Contranly,
as the reference point is placed at Y;,/2 or Y,,, the differ-
ences between the regimes appear more pronounced. The
more straaking feature is the striking structuration of the
supersonic cases: marked negative correlation zones are ob-
served both for positive and negative time delays. On other
hand, a marked tilt of the iso-contours can be observed in
the two supersonic cases. These characteristics are also asso-
ciated to a decrease of the overall characteristic size when the

Mach number increases, however with a less influence than
observed on the axis. An other feature appearing from the
comparison of the three Mach numbers of Fig.7 and 8 is the
role played by the wake axis: when the stationary probe is off
the axis, the null correlation with zero-time delay is obtained
when the moving probe 1s crossing the axis for the supersonic
wakes. This is not at all the case for the subsonic wake, as it
can be more precisely observed on Fig 9.

In a complementary way, the plots of the time-correlations
are given in Fig.10. The abovementionned evolutions of the
typical time length scales with the Mach numbers are evi-
denced. Plotted in non-dimensionned scale, inside the wakes,
the supersonic flows corresponds to a more rapid decrease
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Fig.9 - Tylpical plots of the space-correlation coeffi-
cient: R;1(Y,y';7 =0) for Y = 0; Ym/2, and b (excepted for
M = 2) (non-dimensionalization with b)

a) Moo =0.1 5 b) My, =2.5¢) My =4.2

of the correlations. This behaviour is associated with large
negative values. It is clear from these figures that the cal-
culations of the integral scales are not obvious, due to the
evolution of the correlation shapes; following the definition
chosen (the integral of the absolute value, the zero-crossing
distance or other concepts), the conclusions are diff.cult to
draw. Nevertheless, the overall qualitative evolutions of the
sizes are confirmed. In addition to these size considerations,
the inclination of the iso-structures can be evaluated. In the
subsonic case, the iso-correlations do not exhibit any pre-
ferred orientation, the shapes nearly correspond to ellipses
which longer axis is nearly aligned w.th the wake axis. For
the supersonic case, the quasi-elliptic contours are inclined
with angles of order of 60 degrees for M=2 and 4 (see Table
1). This preferred tilt seems to be a specific characteristic of
the supersonic regime.
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. Fig.10 - Typical plots of the time-correlation coeffi-
cient: R;1(Y',y' =0,7) for Y = 0; Y;,/2 (excepted Y = Ym/2
for M = 2)

4. Conclusion

The present measurements show marked inluence of the su-
personic regime n the structuration of far wakes The mam
effect is a more pronounced structuration of the supersonic
cases. This appears on the distribution of the encrgy and is
cleaily linked with a relative larger transveise extent of the
turbulent activity for supersonic wakes. The intermittency
evolution between turbulent and free stream conditions is
much more localized and placed far from the axis for the Mach
numbers of 2 and 4. The spectra show that, near the axis of
the supersonic wakes, the charcateristic shedding fiequencies
are less energetic and, instead of sizes of roughly the wakes
thichness, typical sizes of half this thickness are mote ener-
getic. The external and internal regions of wakes seems more
statistically different when the regime becomes supersonic,
This description is at this time not associated with turbu-
lence model. The approach of Smits [17), based on hairpins
description in the case of boundary layers, can be extended to
the wake coifiurations. However, such an extension is not
obvious due to the large differences between the large scales
structures of these two configurations. Lastly, the marked in-
fluence of the Mach number on the intermittency distribution
is quite comparable with the observations done for boundary
layers. Providing these observations are performed in both
cases in low velocity gradients and low turbulence activity
regions, the mechanisms invoker by the model ¢f Smits cap
be still valid for the wake configuiation. On other hand, the
use of this analysis remains limted, because it requires the
knowledge of longitudinal STC not measured here.

As far as the transverse space-timre correlations are concerned,
it appears that the supersonic wakes are much more spatially
structurated than subsonic one. In particular in supr-sonic
cases, high levels of negative correlations can be ot (ved,
and the wake axis plays an important role, separating the
regions of positive and negative correlations. Lastly, & pre-
ferred inclination of the structures (of about 60° relstive to
the streamwise direction) issued from the iso-correlations is
observed only in the supersonic wakes. Such an influence
of the compressiblity duc to the supersonic character seems
to be a particular characteristic of the wake configuration.

Lastly, it should be noticed that the principal effects of the
supersonic character of the wakes are quite similar for Mach
numbers 2 and 4.2.
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Abstract

This paper describes a numerical investigation of
entrainment by organized motions in a compressible plane free
shear layer. Insights obtained from the results of recent three-
dimensional direct numerical simulations of a temporal
compresstble mixing layer, at low and moderate convective
Mach numbers, are used to explain the effect of the large-scale
structure dynamics on the transport of a conserved scalar. At
moderate convective Mach number entrainment is found to occur
in several intermediate steps producing a marching instantaneous
concentration profile. Conserved scalar statistics and fast
chemical reaction results at low and moderate convective Mach
numbers are compared. Finally, the instantaneous streamline
pattern at moderate convective Mach number is presented 1n a
convective frame, and the three-dimensional critical points of the
velocity gradient tensor are classified.

LIn iction and Backgroun

The plane compressible free shear layer has been a topic of
renewed interest in recent years due to mixing and combustion
issues related to supersonic flight. The persistence of turbulent
large-scale structures at high Mach number led Papamoschou and
Roshko [1988] to characterize the compressibility of the flow in
a convective frame in which the large-scale structures are
stationary. In this frame, the intrinsic Mach number of the flow
is the convective Mach number (M,), defined as M =(U;-
Uz)/(cy+c2) where ¢} and ¢ are the respective freestream sound
speeds and Uj and U; are the respective freestream velocities.
Using the convective Mach number, Papamoschou an i Roshko
were able to collapse the growth rate date onto a single curve for
a wide range of freestream conditions, and further showed ihat
the growth rate decreases as the convective Mach number
increases.

More recent results from experiments (Clemens »nd Mungal
(1990}, Fourgette et al. [1990]) and direct numerical imulations
(Sandham and Reynolds [1991]) of nonreacting plane free shear
layers and reacting round jets show that the undeslying structure
in a free shear layer changes as the convective Mach number
increases. Experimental evidence suggests that as the convective
Mach number increases the large-scale motions become
significantly more three-dimensional. Flow visualization images
taken at M, =0.62 by Clemens and Mungal [1990] show that the
structures are highly three-dimensional, and that the spanwise
rollers, which are the dominant structures at M;=0.29 due to the
Kelvin-Helmholtz instability, are no longer present with any
degree of regularity. Linear stability predictions by Sandham
and Reynolds [1991] show that as the convective Mach number
increases above 0.6, the shear layer is more unstable to oblique
disturbances than it is to the Kelvin-Helmholtz instability.
Therefore, it is not surprising that the structures resulting from
the primary instability at moderate convective Mach number are
three-dimensional. Based on direct numerical simulation results
obtained for a temporal shear layer, Sandham and Reynolds
[1991] modeled the large-scale structure resulting from the
primary instability at moderate convective Mach number as a
pair of lambda vortices, with the downst.eam vortex inverted.
The plan view passive scalar images of Clemens and Mungal

[1990] exhibit streamwise streakiness which may represent the
legs of the lambda vortices.

For low convective Mach number free shear layers,
phenomenological m  =Is for mixing and chemical reaction have
been developed based on experiments by Konrad [1976]) among
others that demonstrate the significance of organized large-scale
motions 1 entrainment and mixing processes. In the Broadwell-
Breidenthal model (Broadwell and Breidenthal [1982]), free
stream fluid is engulfed into the layer by the churning motion of
the spanwise rollers over a dimension on the order of the layer
thickness. The entrained fluid is subsequently mixed down to the
Kolmogorov scale and ultimately exists either in thin laminar
diffusion layers or in homogenized cores of the spanwise rollers.

T..e entrainment mechanism at moderate convective Mach
number is poorly understood due to the difficulty in obtaining
measurements under extreme flow conditions. Current
measurements have focused primarily on passive scalars which
have integrated history effects built in, For a complicated three-
dimensional flow it is very difficult to deduce from passive scalar
images the kinematics responsible for the scalar transport. Direct
numerical simulations complement the experiments because they
reproduce the low wave number motions very accurately, and,
more importaztly, because they provide passive scalar as well as
pressure, velocity, and vorticity information simultaneously.
While the high wave number motions at large Reynolds numbers
are not currently accessible 1n simulations, the low wave number
motions, which are responsible for the entrainment of fluid into
the layer, are.

In the present work, simulations were performed of
moderate (M =0.8) and low (M,=0.4) convective Mach number
free shear layers at similar Reynolds numbers. To compare the
different entrainment mechanisms, the following results will be
presented: (1) instantaneous structure of the large-scale motions,
(2) conserved scalar statistics and fast chemistry results, and (3)
three-dimensional topology of the velocity field moving at the
convective velocity.

The numerical method used in this work was developed by
Sandham and Reynolds [1991]; therefore, only a brief summary
is provided here. The full compressible Navier-Stokes equations
are solved for the temporally-evolving mixing layer using a
spectral collocation method. The spatial derivatives are obtained
using spectral and higher-order finite difference techniques and
the solution is advanced in time explicitly using a compact third-
order accurate Runge-Kutta method. Periodic boundary
conditions are imposed in the streamwise (x) and spanwise (z)
directions where the spatial derivatives are obtained spectrally.
Characteristic nonreflecting boundary conditions are imposes in
the major gradient direction y) to prevent acoustic waves from
affecting the solution. The grid points are uniform in the spectral
directions and are stretched algebraicly in y, with approxupatgly
half of the points mnside the shear layer. To minimize aliasing
problems, the solution is overresolved and the energy spectra is
monitored during the course of a run. Additional Fourier modes

* Rescarch supported by she United States Dc;)amncm of Enerpy, Office of Basic Energy Sciences, Division of Chemical Scicnces.
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ar included as the resolution becomes marginal.

1 the present study, all of the initial fields were perturbed
with random noise at 2.5% of the freestream velocity. This
choice or initial disturbances was selected to mimic an unforced
mixing larer. The mean velocity was modeled by an error
function, and the mean temperature was derived from the
Croceo-Busemann relationship.  Random noise was applied to
the temperatuie, density, and all components of the velocity field
In addition to the hydrodynamic fields, a conserved scalar with
an imtial hyperolic tangert profile was carried along, having
values of unity in the high-speed stream and zero in the low-
speed stream. The dimensions of the computational box in the
streamwise and spanwise directions, 2Ly and L,, were chosen to
support the growth of both a fundamental and its subharmonic in
the streamwise Jirection, and only a fundamental 1n the spanwise
direction.

The simulations described in the following sections were
performed at an initial Reynolds number (Re) of 800 based on
the initial vorticity thickness (8) and the velocity difference (U;-
Us), at convective Mach numbers (M.) of 0.4 and 0.8, and at
Schmidt and Prandtl numbers of unity. The lower Mach number
simulation was performed to provide a baseline against which the
higher Mach number results could be compared.

3. Instantaneous Structure

The developed structure at M =0.4 and M =0 8 1s shown in
perspective plots of the conserved scalar and pressure in Figure
1. AtM.=0.8, large values of the vorticity magnitude correspond
to the mean vorticity which remains largely in vortex sheets. The
rotational regions tend to have lower values of vorticity
magnitude, consequently, rotational regions are better delineated
by the pressure minima than by the vorticity magnitude. From
the pressure and scalar isocontours it is evident that the structure
at the higher Mach number is much more three-dimensional.
The spanwise rollers which dominate the M;=0.4 simulation are
completely absent at M;=0.8. Instead, they are replaced by
obligue vortices which comprise the legs of two lambda vortices,
similar to the structure reported in Sandham and Reynolds
[1991]. Note that the vortices are tilted with respect to the shear
layer centerline, y=0. The head of the upstream lambda is tilted
toward the high-speed stream while the head of the downstrean.
lambda 1s tilted toward the low-speed stream.

Figure 2 shows several side (x-y), plan (x-z), and end (z-y)
view shces through the M;=0.8 conserved scalar data. The plan
view slice through the midplane, y=0, (Figure 2a) best reveals
the three-dimensionality of the large-scale motions; there is no
evidence of any spanwise structure in this plane. Instead, there
exist several pockets of partially mixed fluid with the mixture
fraction favoring ¢ither the low- or the high-speed side. These

4 high-speed stream

—

low-speed stream
{a)

(c)

Figute 1. Perspective plots at Re=1600 of the conserved scalar at
£=0.5 for a) M;=04, b) M;=0.8, and pressure mimma at 0%
Pmax for ¢) M.=0.8.

pockets of partially mixed fluid exhibit a streamwise preference,
and are adjacent to smaller rotational regions, corresponding to
projections of the legs of the lambda vortices in this plane. The
tid vicw slives (Figure 2b) taken at several streamwise iocations
show the manner in which freestream flid is entrained into the
layer. Depending upon the particular streamwise location,
irrotational fluid is entrained into the layer in one of three ways:
(1) pure low- and high-speed fluid i drawn into the layer in one
continuous motion, (2) pure high- speed fluid is entrained and
mixed with partially mixed fluid inside the layer, or (3) pure low-
speed fluid is entrained and mixed with partialiy mixed fluid
inside the layer. Near the ctreamwise locations where the tips of
adjacent lambda vortices are on top of one another, entrainment
occurs mainly by methods (2) and (3) above. In regions in
between, entrainment occurs mainly by method (1).

. y o . omi

Statistics of the conserved scalar field at M,=0.4 and
M =0.8 are used to simulate fast chemical reactions in the
manner detailed in Mungal and Dimotakis [1984]. The primary
objective of this calculation is to obtain a qualitative comparison
of the histogram of the conserved scalar and the chemical
product profiles at low and mnderate convective Mach numbers.
In Mungal and Dimotakis [1984], the temperature rise due to a
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Figure 2. Contour plots of the conserved scalar at Re=1600,
M=0.8 for a) plan, b) end, and c) side view slices. Solid lines
correspond to 0<£<0.5 and broken lines correspond to
0.5<¢<1.0.

fast reaction is obtained by integrating the product of a weight
function and the probability density function (p.d.f.) of the
conserved scalar. The weight function is adjusted to achieve the
desired reactant equivalence ratio. It has its peak at the
equivalence ratio and decreases linearly to zero in the two
freestreams. The equivalence ratio, ¢, is defined as the ratio of
the reactant concentrations in the freestreams, ¢=(cgp/co1). Here,
a simple one-step reaction, A+B -= AB, is assumed. The product
concentration is maximum at the stoichiometric mixture fraction
(&), which for the above reaction, occurs at E=¢/(I+¢). Given
the p.d.f. of the conserved scalar, the product profile and
thickness can be readily computed. In the present study, the
p.d.f. is replaced by a histogram, obtained by averaging the
mixture fraction in the homogeneous directions, x and z, from a
single realization.

Histograms of the conserved scalar at Re=1600 are
presented in Figure 3. Mote that there are fundamental
differences in the shape of the nistograms for the two cases. At
M.=04, the histogram exhibits three humps, corresponding to
unmixed fluid in the high- and low-speed streams and fluid
mixed at the entrainment ratio. The central peak at the
entrainment ratio extends across the lateral extent of the layer, in
agreement with the p.d.f. obtained in shear layer experiments by
Konrad [1976). In contrast, at M,=0.8, the histogram marches
across the lateral extent of the layer; there is no central peak at
the entrainment ratio. Moreover, at a given y location there
appear to be two preferred mixture fractions. The two peaks may
originate from ‘upwash’ and ‘downwash’ regions 1n the flow
produced by the chuming motion of the two counter-rotating legs
of the lambda vortex. Low-speed fluid is being pumped up or
high-speed fluid is being pushed down. The induced motion by

R
D
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Figure 3. Histogram of the conserved scalar at Re=/000, a)
M,=04 and b) M.=03.
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the lambda vortices is illustrated in Figure 4.

The marching character of the histogram may be attributed
to the inclined orientation of the lambda vortices in the lateral
direction. The tips of the vortices are located close to one of the
freestreams, and therefore, tend to preferendally entrain fluid
from that side of the layer. A raised tip close to the high-speed
side tends to entrain high-speed fluid which subsequently mixes
with partially mixed fluid inside the layer; conversely, a
depressed tip close to the low-speed side tends to entrain pure
low speed fluid which then mixes with partially mixed fluid
inside the layer. Therefore, rather than having one region of
fluid mixed at the entrainment ratio, at moderate Mach numbers
there exist two or more regions of fluid at a mixture fraction
favorng the high- and low-speed sides. In a recent ‘sonic eddy’
compressible turbulence model by Breidenthal {1990], it is
hypothesized that for very large convective Mach numbers, ihe
instantaneous concentration profile would consist of many smail
steps, approaching a smooth mean profile. In this limit, the
concept of gradient diffusion would become applicable. In the
present work, entrainment occurs over one step at M,=0.4, and
over two steps at M=0.8. It is uncertain, whether, at higher

Figure 4. Conceptual drawing illustrating the generation of
‘upwash’ and ‘downwash’ regions by the lambda vortices.

convective Mach numbers, the number of steps would continue
to increase, or whether it would remain at two.

Figure 5 shows a slice of the histograms for the two cases
corresponding to the midplane, y=0. There are several
differences in the shape of histogram worth pointing out. First,
at M =04, there are intrusions of pure high- and low- speed fluid
deep in the layer as evidenced by the two humps centered at a
mixture fraction (&) of zero and unity. These intrusions are the
tongues of freestream fluid that are engulfed into the layer as the
spanwise rollers turn over. On the other hand, at M;=0.8, there
are no tongues of pure fluid present near the center of the layer;
therefore, the range of mixture fractions that are populated is
narrower, Recent compressible shear layer experiments by
Clemens ez al. [1991] also show a narrower range of mixed fluid
at M;=0.62 compared to M;=0.28. Second, at M =0.8, there are
two peaks in the mixture fraction, at §=0.3 and £=0.65, instead
of onc at the entrainment ratio. As previously discussed, the
origin of the two peaks may come from the induced motion of
the legs of the vortices,

The conserved scalar mean profiles are shown in Figure 6
for the two cases. A triple inflection point exists in the mean for
M.=0.4 indicating the presence of homogeneous structure cores
separated by tongues of pure freestream fluid. On the other hand,
at M;=0.8 the mean varies almost linearly from the low- to the
high-speed stream with no evidence of pure fluid penetrating into
the layer.

In Figure 7, the histograms of the conserved scalar were
used to derive the temperature rise due to a fast reaction at
M =04 and M, =0.8 for different inverse equivalence ratios
corresponding to the so-called 'flip' experiments by Mungal and

PE)

Figure 5. Midplane (y=0) through the histogram of the conserved
scalar at Re=1600.

e 050 |-

025 |

y/8

Figure 6. Mean concentration profile.

Dimotakis {1984]. At M =0.4 (Figure 7a), the peaks in the
normalized product profile all lie close to the entrainment ratio.
This is expected since the histogram is non-marching. Note that
there are secondary shoulders present near the edges of the layer
indicating that the tongues of nearly pure freestream fluid have
penetrated deep into the layer. Similar results were obtained in
two-dimensional spatially-evolving mixing layer simulations by
Lowery and Reynolds [1986]. However, subsequent three-
dimensional simulations showed that streamwise vortices inhibit
the lateral extent of the tongues {Lowery and Reynolds [1986],
Buell and Mansour [1989]). In the present simulations, the
streamwise vortices are relatively weak due to the random initial
forcing. In Figure 7b, the normalized product profiles are shown
for Mc=0.8. Here there is a larger shift away from the rich
reactants as a result of the marching character of the histogram.
Second, unlike the lower Mach number case, the maximum
product is not attained at an equivalence ratio of unity; instead,
the maximum product is formed for the flip experiments, with
more product formed on the top and bottom sides of the layer.

The product thickness normalized by the 1% visual
thickness is plotted against the stoichiometric mixture fraction in
Figure 8 for the two cases. While the specific values of the
product thickness are overpredicted due to diffusion effects at the
Reynolds number of the present simulations, the overall shape of
the product thickness as a function of the stoichiometry is
correct. Note, that at M=0.4, the familiar ‘gull wing’ shape is
reproduced, with the maximum product formed at the
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Figure 7. Normalized cbemical product at Re=1600 for a)
MC=0'4 and b) Mc=0-8.

entrainment ratio of unity for a temporal layer. At M =0.8, the
shape is reversed, with more product being attained at a
stoichiometric mixture fraction of 0.2 and 0.8, than of 0.5.
Finally, for the same Reynolds number, slightly more product is
formed at higher convective Mach number over a wide range of
stoichiometric mixture fractions. This result is somewhat
inconclusive, however, since the Reynolds number dependency
of the product thickness has not been determined due to the
limited range available in the present simulations.

In this section, the topology of the velocity ficld at M,=0.8
is determined from instantaneous streamline patterns, obtained
by integrating the instantancous velocity in a frame of reference
moving at the convective velocity. In this reference frame, the
flow pattern is plotted in Figure 9 as projected streamlines in the
three orthogonal planes. The streamlines were initialized near
the critical points, wnere the velocity magnitude is nearly zero.
The location of the critical points relative to the flow structure is
determined by comparing Figure 4 with Figure 9. Figure 92
shows the projected streamline pattern in the x-z planz at y=0,

0.40 Y ‘ - r
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-8 Mc=0.4 “o0
0.25 | ]
0'20 " e, N 1 e 1 .
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Figure 8. Normalized product thickness vs. stoichiometric
mixture fraction.

while Figures 9b and ¢ are y-z and x-y planes near the tips of
two adjacent lambda vortices (near A in Figure 9a). The flow
pattern clearly identifies two pairs of counter-rotating vortices
that are focal in nature separated by three-dimensional saddle
points. In between the two lambda vortices, near A in Figure 9a,
there is a three-dimensional critical point corresponding to a
stable-node/saddle/saddle topology according to the classifica-
tion methodology of Chong, Perry, and Cantwell [1990]. A
saddle point exists in the y-z and x-y planes, and a stable-node
exists in the x-z plane. The saddle point in the x-y plane is
clearly shown in Figure 9b where the streamline patterns for
several adjacent z planes are plotted. Note that the saddle
topology changes to two saddle points separated by an unstable
node over a very small distance. The other saddle point at A is
shown in Figure 9¢c. In this figure, the saddle point is between
four focal regions corresponding to the legs of the vortices. The
local topology is consistent with the idea of entrainment
occurring in two steps across the layer, at least in the vicinity of
this critical point. A second critical point exists at B of the
unstable-node/saddle/saddle type. This critical point is a saddle
in the x-z and y-z planes and an unstable-node in the x-y plane.
The unstable node is shown in Figure 9b. A third critical point
exists at C which is also an unstable-node/saddle/saddle.
However, this critical point is a saddle in the x-z and x-y planes
and an unstable-node in the y-z plane. The unstable node is
shown in Figure 9¢c. A fourth critical point exists at D of the
same type as B. Based on the present flow pattern, it is clear that
at M,=0.8, pure fluid is being entrain 2d from the top and bottom
sides in at least two steps. Further work remains to classify all
of the critical points in the flow, 1o determine their relationship to
one another, and to follow their temporal evolution.

6. Conclusions

Comparisons of direct numerical simulations at convective
Mach numbers of 0.4 and 0.8 suggest that entrainment and
mixing occur more locally at the higher convective Mach
number. Fluid is entrained into the layer in one of two ways: (1)
pure fluid from the low- and high-speed streams is engulfed in
one continuous motion in regions between the tips of the lambda
vortices; or (2) pure fluid is engulfed in several intermediate
steps, wit: pure high- or pure low-spced fluid mixing with
partially mixed fluid inside the layer in regions near the tips of
the lambda vortices. The apparent source of the pariially mixed
fluid is the local upwash/downwash regions created by the
induced motion of the legs of the vortices. The conserved scalar
statistics suggest that, at M;=0.4, the concentration profile is
non-marching due to the presence of the global spanwise rollers,
On the other hand, at M=0.8 and a comparable Reynolds
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number, the instantaneous concentration profile is marching with
the existence of two preferred mixture fractions at a given y
location. The mean concentration and product profiles for the
two cases reflect the non-marching and marching character of the
instantaneous concentration profiles. Finally, the instantaneous
streamline pattern at M;=0.8 is consistent with the concept of
entrainment occurring in multiple steps.
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ABSTRACT

Space-time correlations and filtered Ray-
leigh scattering based flow visualizations
were used to study compressibility effects on
large structures in mixing layers. Two high
Reynolds number mixing layers with M, = 0.51
(case 1) and 0.86 (case 2) were studies.
Previous LDV results had indicated no com-
pressibility effects on the growth rate but
some on the turbulence characteristics of
case 1; however, there were major compress-
ibility effects on both the growth rate and
the turbulence characteristics of case 2. The
streamwise correlations showed 4-5 times
faster decay rate for case 2 than case 1.
while the spanwise correlation for case 1
showed trends similar to incompressible
mixing layers, the behavior of case 2 was
totally different. The pressure fluctuations
in the fully developed region of case 2
developed significant rms variation in spanw-
ise direction with a well defined pattern.
Based on pressure measurements and flow
visualizations one could conclude that the
strictures in case 1 are similar to those in
subsonic case however less organized. In case
2 the structures seem to be nearly spatially
stationary across the span of mixing layer
and highly three dimensional. The structures
in this case seem to be composed of vortices
spanning the mixing layer and inclined in
both the streamwise and the spanwise direc-
tions. It is postulated that perhaps each
large structure is consists of two or more of
these structures with oblique angles of
different sign connected at the edaes of the
mixing layer.

INTRODUCTION

The observation of large scale spanwise
structures in incompressible planar free
shear flows by Brown & Roshko (1974) drasti-
cally altered researchers's perceptions of
mixing and entrainment processes in these

flows. These structures were initially
thought to be a manifescation of low Reynolds
number flows thus reminiscence of transition
to turbulence. However, similar large scale
structures were later observed in higher
Reynolds number mixing layers. La:er study by
Bernal & Roshko (1986) has shown that stream-
wise streaks or structures are embedded
within th. spanwise large structures.

Large scale structures have also been
observed in high Reynolds number compressible
mixing layers (e.g. Chinzei et al, 198s,
Papamoschou & Roshko, 1988, Elliott & Samimy,
1990, Clemens et al, 1990, Shau & Dolling,
and Messersmith et al, 1991). Even though
Morkovin hypothesized compressibility effect
in mixing layers in 1964 (also, Bradshaw,
1977), it was only recently that a compress-

ibility parameter was identified (Bogdanoff,
1983 and Papamoschou & Roshko, 1988) which
correlates the reduction in the growth rate
and also in Reynolds stresses (Elliott &
Samimy, 1990). This parameter was called
convective Mach number, M., by Papamecschou &
Roshko. Ragab & Wu (1989) and S.adham &
Reynolds (1989) have shown that the oblique
instability waves achieve a larger growth
rate than 2-D instability waves at higher
convective Mach numbers.

Previously, we used LDV to measure de-
tailed mean flow and turbulence characteris-
tics of cases 1 and 2 (Samimy & Elliott, 1990
and Elliott & Samimy, 1990). While case 1
depicts the beginning of the compressibility
effect on the growth rate of mixing layers,
case 2 shows over 50% drop in the growth
rate. Between cases 1 and 2 there is over a
factor of 2 drop in Reynolds shear stress and
over 20% drop in the lateral turbulence
fluctuations. The stability results of Ragab
& Wu (1988) and Sandham & Reynolds (1989)
have shown that at case 1 only two-dimension-
al instability waves are amplified, however,
at case 2 two-dimensional and oblique waves
are amplified almost equally. The objective
of this research was to use these two flowfi-
elds to explore the effects of compressibili-
ty on the structures in mixing layers by
using pressure correlation measurements and
flow visualizations.

EXPERIMENTAL FACILITY AND INSTRUMENTATION
The experiments were conducted at the Ohio
State University Aeronautical and Astronauti-
cal Research Laboratory (AARL), The high
Reynolds number wind tunnel has a 152.4 X
152.4 mm test secticn. The tunnel is set up
in a dual-stream configuration in which two
independent streams merge downstream of a
splitter plate to form a constant pressure
mixing layer as shown in Fig. 1. The tunnel
was operated in two different configurations.
The Mach numbers, convective Mach numbers,
velocity and density ratios, and stagnation
temperatures of two streams are shown below.

M My Mo Up/Up pa/py Tp(K)
case 1 1.8 0.51 0.51 0.36 0.64 290
case 2 3.0 0.42 0.86 0.24 0.36 290
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Fig. 1 Schematic of the test section with
pressure probes in it.
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The incoming high speed boundary layer was
fully turbulent with Reynolds number based on
the momentum thickness, Repy, of 27700 and
24700 for the Cases 1 and 2, respectively. At
AARL, the cold and dry air generated at 16.4
MPa (2400 psi) by two four-stage conmpressors
is stored in two storage tanks with 4z.5 m
(1500 ft3) capacity. The air is fed¢ into the
tunnel by two separate control valves. There-
fore, flow to both streams can independently
be controlled. The tunnel can be operated
from a few minutes to several minutes depend-
ing on the nozzles used.

Fast response pressure transducers were
used for space-time correlation measurements.
Figure 1 gives a schematic of the pressure
probes arrangement in the shear layer. The
two probes were fitted with Endevco fast
response differential pressure transducers,
model 8514-20, with a sensitivity from 0 to
20 psi. The pressure sensitive diaphragm of
these transducers is approximately 0.7 mm in
diamecer and an estimated frequency response
of better than 50 kHz which is higher than
what is required in these experiments. The
pressure transducers were mounted perpendic-
ular to the incoming streams, extending about
10 mm out of the probe tip to approximately
measure the static pressure fluctuations. An
Ectron model 563F signal conditioner was used
with each transducer to provide the excita-
tion voltage and to amplify the output sig-
nal. A 5520 MASSCOMP computer was used to
acquire and process 100 blocks of data per
measurement location with 1024 samples per
block and 25C kHz sampling rate.

Filtered Rayleigh scattering (FRS) was use
for flow visualizations. A Quanta Ray model
GCR-4 Nd:YAG laser was used as a light
source. Pulse width and energy per pulse of
the laser were 8 ns and 500 mJ at a wave
length of 522 nm (2nd narmonic). An injec~-
tion seeder was used to narrow the linewidth
and also to add some tuning capability. The
9 mm diameter beam from the laser is passed
through a spherical lens to narrow the sheet
made by expanding the beam through a cylin~
drical lens. The scattered light in the test
section is collected through a molecular
filter into an intensified CCD camera and
recorded on a super VHS tape for post pro-
cessing of the images. The main component
that makes FRS flow visualization system
different from standard Rayleigh scattering
technique is the molecular filter placed in
front of the camera. The molecular filter is
basically an optical cell with a small amount
of iodine crystal in it. When this cell is
evacuated the low partial pressure of the
iodine causes it to form vapor. Since iodine
has absorption bands around the incident
lasvr light of 532 nm, the laser can be tuned
across the absorption bands. The cell used
here is 25.4 cm long and similar to that used
by Miles et al (1991), which is operated in
the optically thick regime where the filter
has a relatively sharp cutoff characteristic.
Figure 2 shows the basic concept of using
this filter in optically thick regime for
flow visualizations. Because the Rayleigh
signal is so weak and it takes a high amount
of laser energy to form an image, there is
usually & problem with background scattering
and reflections from the windows and walls of
the wind tunnel. Since this noise is un-
shifted having the same wave length as the
incident 1ight and scattering from mole-
cules/particles within the flow have a Dopp-
ler shift, the laser can be tuned to an
absorption band of the iodine and the back-
ground light can be filtered out. Miles et al

1
. DOPPLER
! SHIFTED
1 13
I i
il
It
I\
0 L P

Fig. 2 The concept of FRS with a sharp cutoff
molecular filter.

(1991} have discussed the technique in more
detail. Although only flow visualization
results are presented here, a multiple camera
system is currently being developed to obtain
instantaneous velocity and density measure-
ments. For this case a sloping instead of a
sharp cutoff filter needs to be used. This is
similar, to some degree, to a system devel-
oped by Komine et al (1991).

EXPERIMENTAL RESULTS AND DISCUSSIONS

1. Praasure Results

ise Vv . Figure 3
shows streamwise evolution of power spectrum
for case 1 at about the center of the shear
layer (y* = 0). The lateral nondimensional
coordinate is defined as y* = (¥Y~Y,of)/6,
where y is the lateral location measured from
the top surface of the splitter plate, y,.¢ is
the lateral distance from the splitter plate
where the measured convective velocity using
spatial correlation matches the theoretical
value, and §, is the local vorticity thick-
ness. The downward shift in the broadband
peak in the power spectrum, which is well
defined in downstream locations, is due to
the interaction among large scale structures
and similar to incompressible results
(Hussain & Zaman, 1985). Based on our previ-
ous results, the flow for this case is fully
developed for x>150 mm (Samimy & Elliott,
1990). The case 2 shows a similar downshift
in the frequency, however, the broadband peak
frequency is not as well defined.

Streomwise Evolution of Powe:r Spectra
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Fig. 3 Power spectra for various streamwise
locations for the case 1.

Figure 4 shows the streamwise cohecrence
for both cases in only one lateral location
in the fully developed region. When ax/s, =
0.5, the coherence levels are comparable for
two cases. The coherence level drops by aboat
50% with increasing probe-separation to dx/é,
= 1 and 4.7, respectively, for cases 1 and 2.
This indicates tremendous compressibility
effect on the organization of large struc-~
tures. Note that the local Reynolds numbers
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Coherence for Voried Streamwise Seporotions
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Fig. 4 Streamwise coherence for various
separation distance in the fully developed
region (a) case 1 and (b) case 2.

Streomwise Correlation for Streamwise Variotions
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Fig. 5 Streamwise space-time correlations for
various separation distance in the fully
developed region (a) case 1 and (b) case 2.

are comparable for the two cases. The stream-
wise correlations show a similar compress-
ibility effect (Fig. 5). The results obtained
in other lateral locations and also in the
developing region show similar compressibili-
ty effect (Reeder, 1991).

The convective Mach number concept was
introduced by Bogdanoff (1983) and
Papamoschou and Roshko (1988) and has been
used since then by many to correlate com-
pressibility effect. The concept is based on
the existence of a saddle point between two
Brown and Roshko (1974) type spanwise two-
dimensional rollers at which the two streams
of the mixing layer stagnate in the coordi-
nate system travelling with the rollers. The
concept breaks down at supersonic convective
Mach numbers (Papamoschou, 1991, McIntyre &
Settles, 1991). The streamwise spatial corre-
lations shown in Fig. § can be used directly
to calculate the average convective velocity
thus the convective Mach number. Instead we
have calculated the convective velocity of
individual structures (Reeder, 1991). Figure
6 shows histograms of convective velocity for
case 2 at two lateral locations. The follow-
ing observations can be made: 1) even at y" =
0 where the average U, is equal to the theo-
retical U,, structures have a wide range of
convective velocities and 2) both the average
and the distribution change with y*. The
results for case 1 show similar characteris-~
tics but less lateral variations. The lateral
variation of average U, has been reported
before in both incompressible and compress-
ible mixing layers (Jones et al, 1973 and
Tkawa & Kubota, 1975). In light of these
results and flow visualization results to
follow which show highly three dimensional

Ue Distnibutinn
M=0 86 yo=-005 v 21 50mm x2=162mm 2¢Cmm

Averoge Ucmddhm /e

3 8
~——

g 8

Occurences
3

1

L. a B
200 300
Velocity (m/'s)

Ue Distribntinn
M0 86 yox =017 =150mm xz=162nm 2=0mm

Averoge Ligm V7R m /s

3 &

g 8
N
X

QOccurences
8 &

3

Fig. 6 Histograms of U, at various lateral
positions in the fully developed region for
case 2.
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nature of large structures in case 2, two
things need to be kept in mind: 1) that while
M. is a good indicator of compressibility
level, one should not overemphasize it, 2)
any U. measurements depend a great deal on
the lateral position where they are taken,
and 3) any U,, and thus M, measurements based
on a limited number of structures could
potentially produce highly erroneous results.

Spanwise Variations. The rms pressure fluc-
tuations in the developing region, at about
1008, from the splitter plate where 8, is the
momentum thickness of incoming high speed
flow, did not show any observable variations
in the spanwise direction in either case
(Reeder, 1991). Some spanwise variations with
no apparent pattern were developed downstream
in case 1 (Reeder, 1991). However, variations
up to 3 fold with a relatively distinct
pattern can be seen in the fully developed
region of case 2 (Fig. 7). The tunnel span is
from 0 to 76 mm, but the measurements are
taken only in the midsection of the tunnel

Spanwise RMS Variotion

M0 €6 x=170mm y*e~0 60

8, =24mm
10 [’ ¢

(23
i °© Protw 1
x Probe 2

A
a

13 (pm)
b

24

o

-
a

02 x

-

° 24 30 3 42
~42 =36 =30 =24 ~18 <12 =6 0 6 12 18
o Sponwise Locotion from the Centerhine (mm}

Spanwise RMS Voriation
W =0 9F 1z170mm y==-015

8, »24mm

ver ] Probe 1
x Probe
°
ost o ° b
° ML L
° ©
° ©x "o
o6l > x  a o ! e
& 1
& > Lot A a
% fess o
g L]
o4 °
8 2 .
LI}
02
°C X X 24 30 )6 42
42 -16 =30 <24 -18 12 -6 O 6 172 1_8
To Spanwise Location from the Centerline (mm)
Spanwise RMS Variotion
14,0 86 x=170mm y'=0 0€
10 &, »24mm
0 o C
0% N N
° ° 8
¥
o
o6t » S
é : 2 o © g »
%) b X
Zos
o2 o Provel
x Probe 2
17 18 24 30 36 42

00 N s
“42 =36 ~30 =24 =18 =42 -6 O & 1
1-% Sponwise Locotion from the Centerline (mm)

Fig. 7 RMS pressure fluctuations across the
span of case 2 in the fully developed region
at y" = {a) -0.6, (b) -0.15 and (c) 0.06.

far from the side walls. The results in Fig.
7 indicate that some sort of structures have
been developed in case 2 where these struc-
tures seem to be nearly spatially stationary.
The maximum rms pressure producing region of
these structures seems to start from the low
speed side and to branch out in spanwise
direction as the legs extend in the lateral
direction.

As was discussed earlier, stability analy-
sis of Ragab and Wu (1989) and Sandham and
Reynolds (1989) show that oblique instability
waves are more amplified than two~-dimensional
ones at high compressibility levels. In fact,
direct numerical simulations of Sandham and
Reynolds with two initial oblique instability
waves of opposite signs produced a pressure
field which appears similar to the experimen-
tal results described in the above paragraph.
However, their results showed two horseshoe
type vortices; one with the head at high
speed side and the other similar to the one
described above.

Spanwise correlations normalized with rms
at y = -0.21 for case 1 dropped from 0.27 to
0.08 when dz/§, was changed from 0.25 to 1.2
in the fully developed region of the mixing
layer. The maximum correlations occurred at
zero time delay signifying two-dimensional
nature of the structures. These behaviors are
similar to incompressible mixing layer re-
sults (Browand & Troutt, 1980). Figure 8
shows the spanwise correlation for case 2 in
the fully developed region at two y" loca-
tions. The general trend of these correla-
tions indicate the complex nature of the
structures. When one probe is at z = 0, y" =
-0.6, and dz/6, = 0.17, the peak correlation
level is relathely high and positive with a
small time shift. However, the correlation
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peak changes sign and the level drops signif-
icantly with relatively large time shift for
dz/6, 2 0.25. At y" = -0.15 location, at small
dz/é, both positive and negative correlations
are present, but when dz/§, is increased the
correlations is negative and the level of
correlations first increases and then drops.
Table 1 shows the correlation level, the time
shift and the angle of structures from span-
wise axis for y* = -0.15 and dz/§,, = 0.25, The
angle is calculated using 8 = tan™}(U,*r/dz),
where U, is the theoretical convective veloc-
ity. More detailed results are reported by
Reeder (1991).

Table 1
Ccross Correlation Data

x=170mm y'=40.15 dz=0258,

Primary Peak Secondary Peak
2(mm) | z(mm) | Level /equsec)/ 8 Level /s (usec)/ B
42 236 0085 /12 /38
-36 -30 =00 correl
-30 24 012 /2 /T
2% -18 008 /-10 /33
21 -15 010 / 4 /15
.18 12 007 / 4 /15
12 + 007 / 12 /38
-9 3 005 / 4 /15
I 0 007 /16 /46"
3 3 013 /.10 /33
0 6 012 /12 /38
3 9 013 /8 /27
6 12 010/ 0 /0
12 18 Q012 /4 /15
15 21 010 / 4 /15
18 2% 047/ 40 /6> D045/ 0 /0
21 27 0053/ 48 /T2 0045/ 0 /0
4 30 006 / 32 /64
30 36 006 / 52 /4 +004 /44 /70
36 2 +004 /40 /69"

The picture of the structures arising from
the results presented so far is a complex
one. All the indications are that the most
dominant structures are highly three-dimen-
sional inclined both in the mean flow direc-
tion (x) and in the spanwise direction (2z)
and they are nearly spatially stationary. An
element of structure may be a horseshoe type
vortex with the head in the low speed side
and the legs, inclined both in the streamwise
and the spanwise directions extending toward
the high speed side. The element of structure
could also be a single vortex tube type
spanning the mixing layer and inclined in
both the streamwise and the spanwise direc-
tions. Most probably, a large structure is
composed of a few of these elements with
oblique angles of different signs connected
at either edge of mixing layer.

2. Plow Visualizations

As was discussed earlier, filtered Pay-
leigh scattering technique was used for flow
visualizations. The background noise was
removed by the molecular filter. As with the
standard Rayleigh scattering technique, the
signal is proportional to density andi to the
radius of molecules/particles to the sixth
power. In a typical supersonic flow facility,
the o0il and water particles are removed by
o0il separators, dryers, and filters. Yet no
matter how efficient these processes are,
some water moisture will remain in the flow
system. Depending upon the flow conditions

e e

such as pressure and temperature, the mois-
ture may condense and form water particles in
the test section (Wegener & Mack, 1958). In
our case, the condensation occurs only in the
high speed stream of case 2. These particles
are so small that we cannot detect them with
our LDV system in which case we use atomized
oil particles on the order of 0.5 to 1 um.
Our estimate is that these condensed parti-
cles are in the order of 0.01 um. These
particles which are about an order of magni-
tude larger than molecules in the air provid-
ed scattering media for the flow visualiza-
tions. Therefore, in the visualization photo-
graphs, the bright regions mark the fluid
from high speed side, and the dark regions
the fluid mark the low speed side. To get a
better contrast in the photographs we have
limited the grey scale to two.

Figure 9 shows side view (x-y plane) of
the flowfield for case 2 from about 40 to
3508, in (a) and from about 300 to 5408, in
(b) where 8y is the incoming boundary layer
momentum thickness of high speed stream. One
identifies very large structures with nearly
equal spacing in streamwise direction angd
many smaller structures on the edges of each
large structure can be seen. These two photo-
graphs were taken at two different times. The
exposure time for all the photographs is 8
ns. Figure 10 shows the spanwise view (y-z
plane) of structures at an axial location of

30mm

15mm

Fig. 9 FRS visualization of x-y plane for
case 2.

~20mm (o] +20mm

Fig. 10 FRS visualization of y-z plane for
case 2.
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about 4906,. The photograph shows various
structures in the spanwise direction con~-
firming very low spanwise correlation levels
shown in Fig. 8. Figure 11 shows the plan
view (x-z plane) cutting through the shear
layer just slightly above the splitter plate
in the axial location extending from about
280 to 4306;. In these photographs, one
easily observes oblique structures.

15mm

i
Fig. 11 FRS visualization of x-z plane for
case 2.

The technique utilized here is based on a
pulsed YAG laser with 8 ns pulse duration and
10 pulse/second repetition rate. In taking
these photographs, the flow is frozen for
about 8 ns while a photograph is taken, but
there is no time relation between two succes-
sive photographs or frames. However, we have
taken hundreds of frames and observed them
individually. The results of these observa-
tions are be summarized here. There are large
scale structures seen in both streamwise and
spanwise views. These structures grow both in
the streamwise and spanwise directions.
Sometimes they seem to have very well orga-
nized patterns in both directions. The plan
view photographs show both spanwise and
obligue structures. In some photographs,
either there are no structures or the struc-
tures do not seem to have any pattern. A
possible explanation for spanwise photographs
may be that in each frame the sheet of light
cuts through different parts of the struc-
tures, e.g. the core or the braid section of
structures. But the only explanation for the
streamwise and the plan views is that the
structures are very poorly organized in time
and are highly three-dimensjional. This is
what one would also conclude from coherence
and correlation results discussed earlier.

CONCLUSIONS
The behavior of case 1 is similar to
incom . :ssible mixing layers in many ways.

However, case 2 shows totally different
behavior. It seems that the higher compress-
ibility case can support oblique structures;
therefore, the structures are highly three
dimensional and complex for case 2. All
indications are that these structures are
nearly spatially stationary in spanwise
direction spanning the mixing layer and
inclined in both the streamwise and the
spanwise direction. They have both positive
and negative angles, and if they travel
together they may connect at either edge of
the mixing layers.

Acknowledgements

The research is supported by ONR (with Dr.
S. . Lekoudis) and NASA Lewis (with Dr.
K.B.M.Q. Zaman). The authors would like to
thank colleagues Diana D. Glawe and Stephen
A. Arnette and AARL staff for their help.

REFERENCES

Bernal, L.P. and Roshko, A., 1986, "Streamwise vortex
structure in plane mixing layers,” J. Fluid Mech,
170, 499-525.

Bogdanoff, D.W., 1983, "Compressibility effects in
turbulent shear layers,” AIAA J., 21, 926-927.

Bradshaw, P., 1977, "Comprassible turbulent shear
layers,” Ann Rev Fluid Mech, 63, 449-464.

Browand, F.X., and Troutt, T.R., 1980, "A note on
spanwise structure in the two-dimensional mixing
layer,” J. Fluid Mech., 917, 771-781.

Brown, G.L. and Roshko, A., 1974, "On density effects
and large scale structure in turbulent mixing
layers,” J. Fluid Mech, 64, 775-816.

Chinzei, N., Masuya, G., Komuro, T., Murakami, A., and
Xodou, K., 1986, "Spreading of two stream supersonic
turbulent mixing layer," Phys Fluids, 29, 1345-1347.

Clemens, N.T. and Mungal M.G., 1990, "Two- and three-
dimensional effects in the supersonic mixing layer,"
AIAA-90-1978.

Elliott, G.S. and Samimy, M., 1990, "Compressibility
effects in free shear layers," Phys Fluids, 2, 1231-
1240.

Hussain, A.K.M.F. and Zaman, K.B.M.Q., 1985, "An
experimental study of organized motions in the
turbulent plane mixing layer,"” J. Fluid Mech, 159,
85-104.

Ikawa, H. and Kubota, T., 1975, "Investigation of
supersonjc turbulent mixing layer with zero pressure
gradient,” AIAA J., 13, 566~572,

Jones, G., Planchon, H.P., and Hammersly, R.J., 1973,
"Turbulent correlation measurements in a two-stream
mixing layer,” AIAA J., 11, 1146-1150.

Komine, H., Brosnan, S.J., Litton, A.B., and Stappa
erts, "Real-time Doppler global velocimetry,” AIAA~
91-0337.

Messersmith, N.L., Dutton, J.C., and Krier, H., 1991,
*Experimental investigation of large scale struc-
tures in compressible mixing layers,” AIAA Paper
91-0244.

Miles, R.B., Lempert, W,R., and Forkey, J., "Instant-
aneous velocity fields and background suppreasion by
filtered Rayleigh scattering,” AIAA-91-0357.

Morkovin, M.V., 1961, "Effects of compressibility on
turbulent flows," Mechanique de la Turbulence, Mar-
seille, France.

Papamoschou, D. and Roshko, A., 1988, "The compress-
ible turbulent mixing layer: an experimental study,"
J. Fluid Mech, 197, 453-477.

Papamoschou, D., 1991, “"Structure of the compressible
turbulent shear layer,” AIAA J., 29, 680-681.

Ragab, S.A. and Wu, J.L., 1989, “"Linear instabilities
in two-dimensional compreesible mixing layers, Phys
Fluids, 1, 957-966.

Reeder, M.F., 1991, "A study of the effects of com-
pressibility in mixing layers using two-probe
pressure correlations,” 